Selasa, 05 April 2011

LISTRIK

Sifat-sifat listrik
Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frase "jumlah listrik" digunakan juga dengan frase "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.
Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".
Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).
Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik..
Berkawan dengan listrik
Listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena strum). Demikian pula jika kita hanya memegang saluran negatif.
Dengan listrik arus bolak-balik, Listrik bisa juga mengalir ke bumi (atau lantai rumah). Hal ini disebabkan oleh sistem perlistrikan yang menggunakan bumi sebagai acuan tegangan netral (ground). Acuan ini, yang biasanya di pasang di dua tempat (satu di ground di tiang listrik dan satu lagi di ground di rumah). Karena itu jika kita memegang sumber listrik dan kaki kita menginjak bumi atau tangan kita menyentuh dinding, perbedaan tegangan antara kabel listrik di tangan dengan tegangan di kaki (ground), membuat listrik mengalir dari tangan ke kaki sehingga kita akan mengalami kejutan listrik ("terkena strum").
Listrik dapat disimpan, misalnya pada sebuah aki atau batere. Listrik yang kecil, misalnya yang tersimpan dalam batere, tidak akan memberi efek setrum pada tubuh. Pada aki mobil yang besar, biasanya ada sedikit efek setrum, meskipun tidak terlalu besar dan berbahaya. Listrik mengalir dari kutub positif batere/aki ke kutub negatif.
Sistem listrik yang masuk ke rumah kita, jika menggunakan sistem listrik 1 fase, biasanya terdiri atas 3 kabel:
Pertama adalah kabel fase yang merupakan sumber listrik bolak-balik (positif dan negatifnya berbolak-balik terus menerus). Kabel ini adalah kabel yang membawa tegangan dari pembangkit tenaga listrik (PLN misalnya); kabel ini biasanya dinamakan kabel panas (hot), dapat dibandingkan seperti kutub positif pada sistem listrik arus searah (walaupun secara fisika adalah tidak tepat).
Kedua adalah kabel netral. Kabel ini pada dasarnya adalah kabel acuan tegangan nol, yang biasanya disambungkan ke tanah di pembangkit tenaga listrik (di kantor PLN misalnya); dapat dibandingkan seperti kutub negatif pada sistem listrik arus searah; jadi jika listrik ingin dialirkan ke lampu misalnya, maka satu kaki lampu harus dihubungkan ke kabel fase dan kaki lampu yang lain dihubungkan ke kabel netral; jika dipegang, kabel netral biasanya tidak menimbulkan efek strum yang berbahaya, namun karena ada kemungkinan perbedaan tegangan antara acuan nol di kantor PLN dengan acuan nol di lokasi kita, ada kemungkinan si pemegang merasakan kejutan listrik. Dalam kejadian-kejadian badai listrik luar angkasa (space electrical storm) yang besar, ada kemungkinan arus akan mengalir dari acuan tanah yang satu ke acuan tanah lain yang jauh letaknya. Fenomena alami ini bisa memicu kejadian mati lampu berskala besar.
Ketiga adalah kabel tanah atau Ground. Kabel ini adalah acuan nol di lokasi pemakai, yang biasanya disambungkan ke tanah di rumah pemakai; kabel ini benar-benar berasal dari logam yang ditanam di tanah dekat rumah kita; kabel ini merupakan kabel pengamanan yang biasanya disambungkan ke badan (chassis) alat2 listrik di rumah untuk memastikan bahwa pemakai alat tersebut tidak akan mengalami kejutan listrik. Walaupun secara teori, acuan nol di rumah (kabel tanah ini) harus sama dengan acuan nol di kantor PLN (kabel netral), kabel tanah seharusnya tidak boleh digunakan untuk membawa arus listrik (misalnya menyambungkan lampu dari kabel fase ke kabel tanah). Tindakan ceroboh seperti ini hanya akan mengundang bahaya karena chassis alat-alat listrik di rumah tersebut mungkin akan memiliki tegangan tinggi dan akan menyebabkan kejutan listrik bagi pemakai lain. Pastikan teknisi listrik anda memasang kabel tanah di sistem listrik di rumah. Pemasang ini penting, karena merupakan syarat mutlak bagi keselamatan anda dari bahaya kejutan listrik yang bisa berakibat fatal dan juga beberapa alat-alat listrik yang sensitif tidak akan bekerja dengan baik jika ada induksi listrik yang muncul di chassisnya (misalnya karena efek arus Eddy).
Unit-unit listrik SI
edit Unit-unit elektromagnetisme SI
Simbol
Nama kuantitas
Unit turunan

Unit dasar
I
Arus
ampere
A
A
Q
Muatan listrik, Jumlah listrik
coulomb
C
A·s
V
Perbedaan potensial
volt
V
J/C = kg·m2·s−3·A−1
R, Z
Tahanan, Impedansi, Reaktansi
ohm
Ω
V/A = kg·m2·s−3·A−2
ρ
Ketahanan
ohm meter
Ω·m
kg·m3·s−3·A−2
P
Daya, Listrik
watt
W
V·A = kg·m2·s−3
C
Kapasitansi
farad
F
C/V = kg−1·m−2·A2·s4

Elastisitas
reciprocal farad
F−1
V/C = kg·m2·A−2·s−4
ε
Permitivitas
farad per meter
F/m
kg−1·m−3·A2·s4
χe
Susceptibilitas listrik
(dimensionless)
-
-

Konduktansi, Admitansi, Susceptansi
siemens
S
Ω−1 = kg−1·m−2·s3·A2
σ
Konduktivitas
siemens per meter
S/m
kg−1·m−3·s3·A2
H
Medan magnet, Kekuatan medan magnet
ampere per meter
A/m
A·m−1
Φm
Flux magnet
weber
Wb
V·s = kg·m2·s−2·A−1
B
Kepadatan medan magnet, Induksi magnet, Kekuatan medan magnet
tesla
T
Wb/m2 = kg·s−2·A−1

Reluktansi
ampere-turns per weber
A/Wb
kg−1·m−2·s2·A2
L
Induktansi
henry
H
Wb/A = V·s/A = kg·m2·s−2·A−2
μ
Permeabilitas
henry per meter
H/m
kg·m·s−2·A−2
χm
Susceptibilitas magnet
(dimensionless)
-
-

SIFAT CAHAYA

Dapatkah kamu melihat benda-benda yang ada di sekelilingmu dalam keadaan gelap? Kamu tentu menjawab tidak dapat. Tahukah kamu mengapa kita hanya dapat melihat benda-benda ketika ada cahaya yang mengenai benda tersebut? Cahaya yang masuk melalui jendela kamarmu di pagi hari merambat lurus seperti terlihat pada gambar di awal bab. Merambat lurus merupakan salah satu sifat cahaya. Agar kamu mengetahui sifat-sifat cahaya lainnya, perhatikan uraian berikut ini.


A. Sifat-Sifat Cahaya
Benda-benda yang ada di sekitar kita dapat kita lihat apabila ada cahaya yang mengenai benda tersebut. Cahaya yang mengenai benda akan dipantulkan oleh benda ke mata sehingga benda tersebut dapat terlihat. Cahaya berasal dari sumber cahaya. Semua benda yang dapat memancarkan cahaya disebut sumber cahaya. Contoh sumber cahaya adalah matahari, lampu, senter, dan bintang. Cahaya memiliki sifat merambat lurus, menembus benda bening, dan dapat dipantulkan.
1. Cahaya Merambat Lurus
Pernahkah kamu melihat cahaya matahari yang masuk melalui celah-celah atau jendela yang ada di rumahmu? Bagaimana arah rambatan cahaya tersebut? Cahaya yang masuk melalui celah-celah jendela merambat lurus.

2. Cahaya Menembus Benda Bening
Mengapa kaca jendela rumahmu merupakan kaca yang bening? Bagaimana jika kaca tersebut ditutup dengan triplek atau kertas karton? Apakah cahaya matahari dapat masuk? Cahaya dapat masuk ke dalam rumahmu selain melalui celah-celah juga melalui kaca jendela yang ada di rumahmu. Kaca yang bening dapat ditembus oleh cahaya matahari. Apabila kamu menutup kaca jendela rumahmu dengan menggunakan karton maka cahaya tidak dapat masuk ke dalam rumahmu. Hal ini menunjukkan bahwa cahaya hanya dapat menembus benda yang bening.
3. Sifat-sifat Cahaya Apabila Mengenai Cermin Datar dan Cermin Lengkung(Cekung dan Cembung)
Sifat-sifat cahaya yang dihasilkan oleh cermin tentunya berbeda-beda sesuai dengan bentuk permukaan cermin tersebut. Berdasarkan permukaannya, cermin dikelompokkan menjadi tiga, yaitu cermin datar, cermin cekung, dan cermin cembung. Cermin datar adalah cermin yang permukaan pantulnya datar. Contohnya cermin yang ada di meja rias. Cermin cekung adalah cermin yang pemukaan pantulnya berupa cekungan. Cekungan ini seperti bagian dalam dari bola. Contohnya bagian dalam lampu senter dan lampu mobil. Cermin cembung adalah cermin yang permukaan pantulnya berupa cembungan. Cembungan ini seperti bagian luar suatu bola. Contohnya spion pada mobil dan motor.
a. Sifat-sifat cahaya yang mengenai cermin datar
Hampir setiap hari tentunya kamu berkaca di depan cermin yang ada di kamarmu. Untuk mengetahui sifat-sifat bayangan yang dibentuk oleh cemin datar,
Dari kegiatan yang kamu lakukan tersebut, kita dapat mengetahui sifatsifa bayangan yang dibentuk oleh cermin datar. Sifat-sifat tersebut adalah sebagai berikut.
1) Bayangan benda tegak dan semu. Bayangan semu adalah bayangan yang dapat kita lihat dalam cermin, tetapi di tempat bayangan tersebut tidak terdapat cahaya pantul.
2) Besar dan tinggi bayangan sama dengan besar dan tinggi benda sebenarnya.
3) Jarak benda dengan cermin sama dengan jarak bayangannya.
4) Bagian kiri pada bayangan merupakan bagian kanan pada benda dan sebaliknya.
b. Sifat-sifat cahaya yang mengenai cermin cekung
Pemantul cahaya pada lampu mobil danlampu senter menggunakan cermin cekung.Bagaimanakan sifat bayangan yangdibentuk oleh cermin cekung?

Image:center.jpg

c. Sifat-sifat cahaya yang mengenai cermin cembung

Dalam kehidupan sehari-hari kita jumpai benda yang menggunakan cermin cembung, yaitu cermin pada kaca spion kendaraan bermotor baik mobil ataupun motor. Pada kendaraan bermotor, kaca spionnya menggunakan cermin cembung dengan tujuan agar pengemudi lebih mudah mengendarai kendaraannya, ketika melihat kendaraan dan benda lain yang ada di belakangnya. Apabila kamu memperhatikan kendaraan yang ada di belakang motor atau mobil yang sedang kamu naiki maka bayangan mobil di cermin terlihat lebih kecil dari aslinya. Sifat bayangan yang dibentuk oleh cermin cembung adalah semu, tegak dan diperkecil.
Apabila kamu memperhatikan kendaraan yang ada di belakang motor atau mobil yang sedang kamu naiki maka bayangan mobil di cermin terlihat lebih kecil dari aslinya. Sifat bayangan yang dibentuk oleh cermin cembung adalah semu, tegak dan diperkecil. Dari hasil kegiatan yang dilkukan olehmu, pensil yang berada di gelas yang beisi air terlihat bengkok. Selain itu, uang logam yang dimasukkan ke dalam gelas yang berisi air terlihat lebih dangkal. Kedua peristiwa ini merupakan contoh peristiwa pembiasan cahaya. Apabila cahaya merambat melalui dua medium yang berbeda kerapatannya maka cahaya akan mengalami pembelokan atau pembiasan.


Image:gelas.jpg
Udara memiliki kerapatan yang lebih kecil daripada air. Bila cahaya merambat dari zat yang kurang rapat ke zat yang lebih rapat maka cahaya akan dibiaskan mendekati garis normal. Akan tetapi apabila cahaya merambat dari zat yang lebih rapat ke zat yang kurang rapat maka cahaya akan dibiaskan menjauhi garis normal. Garis normal merupakan garis yang tegak lurus pada bidang batas kedua permukaan.

Image:jalan sinar.jpg

B. Cahaya Putih Terdiri Atas Berbagai Warna
Tahukah kamu warna dari cahaya matahari yang setiap hari dipancarkan ke bumi? Apakah cahaya matahari berwarna putih? Bagaimana dengan sumber cahaya lainnya? Cahaya matahari yang kita lihat seperti warna putih sebenarnya terdiri dari berbagai macam warna. Agar lebih jelas, pehatikan uraian berikut ini!
1. Peristiwa Penguraian Cahaya dalam Kehidupan Sehari-hari
Kalian tentu penah melihat pelangi di langit. Pelangi merupakan salah satu peristiwa dalam kehidupan sehari-hari yang berhubungan dengan penguraian cahaya. Pelangi biasanya dapat kita lihat pada saat hujan turun rintik-rintik. Warnapelangi sama halnya seperti warna spektrum cahaya yang terbentuk pada kegiatan yang telah kamu lakukan sebelumnya. Warna merah, jingga, kuning, hijau, biru, nila dan ungu pada pelangi berasal dari pembiasan dan penguraian cahaya putih matahari oleh bintik-bintik air hujan. Pelangi yang memilki warna dan bentuk yang indah dapat kita buat melalui percobaan sederhana berikut ini.

Cahaya

Untuk sinetron dengan judul yang sama, lihat Cahaya (sinetron).


Gelombang elektromagnetik dapat digambarkan sebagai dua buah gelombang yang merambat secara transversal pada dua buah bidang tegak lurus yaitu medan magnetik dan medan listrik. Merambatnya gelombang magnet akan mendorong gelombang listrik, dan sebaliknya, saat merambat, gelombang listrik akan mendorong gelombang magnet. Diagram di atas menunjukkan gelombang cahaya yang merambat dari kiri ke kanan dengan medan listrik pada bidang vertikal dan medan magnet pada bidang horizontal.


Cahaya adalah energi berbentuk gelombang elekromagnetik yang kasat mata dengan panjang gelombang sekitar 380–750 nm.[1] Pada bidang fisika, cahaya adalah radiasi elektromagnetik, baik dengan panjang gelombang kasat mata maupun yang tidak. [2][3]
Cahaya adalah paket partikel yang disebut foton.
Kedua definisi di atas adalah sifat yang ditunjukkan cahaya secara bersamaan sehingga disebut "dualisme gelombang-partikel". Paket cahaya yang disebut spektrum kemudian dipersepsikan secara visual oleh indera penglihatan sebagai warna. Bidang studi cahaya dikenal dengan sebutan optika, merupakan area riset yang penting pada fisika modern.
Studi mengenai cahaya dimulai dengan munculnya era optika klasik yang mempelajari besaran optik seperti: intensitas, frekuensi atau panjang gelombang, polarisasi dan fasa cahaya. Sifat-sifat cahaya dan interaksinya terhadap sekitar dilakukan dengan pendekatan paraksial geometris seperti refleksi dan refraksi, dan pendekatan sifat optik fisisnya yaitu: interferensi, difraksi, dispersi, polarisasi. Masing-masing studi optika klasik ini disebut dengan optika geometris (en:geometrical optics) dan optika fisis (en:physical optics).
Pada puncak optika klasik, cahaya didefinisikan sebagai gelombang elektromagnetik dan memicu serangkaian penemuan dan pemikiran, sejak tahun 1838 oleh Michael Faraday dengan penemuan sinar katoda, tahun 1859 dengan teori radiasi massa hitam oleh Gustav Kirchhoff, tahun 1877 Ludwig Boltzmann mengatakan bahwa status energi sistem fisik dapat menjadi diskrit, teori kuantum sebagai model dari teori radiasi massa hitam oleh Max Planck pada tahun 1899 dengan hipotesa bahwa energi yang teradiasi dan terserap dapat terbagi menjadi jumlahan diskrit yang disebut elemen energi, E. Pada tahun 1905, Albert Einstein membuat percobaan efek fotoelektrik, cahaya yang menyinari atom mengeksitasi elektron untuk melejit keluar dari orbitnya. Pada pada tahun 1924 percobaan oleh Louis de Broglie menunjukkan elektron mempunyai sifat dualitas partikel-gelombang, hingga tercetus teori dualitas partikel-gelombang. Albert Einstein kemudian pada tahun 1926 membuat postulat berdasarkan efek fotolistrik, bahwa cahaya tersusun dari kuanta yang disebut foton yang mempunyai sifat dualitas yang sama. Karya Albert Einstein dan Max Planck mendapatkan penghargaan Nobel masing-masing pada tahun 1921 dan 1918 dan menjadi dasar teori kuantum mekanik yang dikembangkan oleh banyak ilmuwan, termasuk Werner Heisenberg, Niels Bohr, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David Hilbert, Roy J. Glauber dan lain-lain.
Era ini kemudian disebut era optika modern dan cahaya didefinisikan sebagai dualisme gelombang transversal elektromagnetik dan aliran partikel yang disebut foton. Pengembangan lebih lanjut terjadi pada tahun 1953 dengan ditemukannya sinar maser, dan sinar laser pada tahun 1960.
Era optika modern tidak serta merta mengakhiri era optika klasik, tetapi memperkenalkan sifat-sifat cahaya yang lain yaitu difusi dan hamburan.

AIR

Sifat-sifat kimia dan fisika
Air
Dimensi dan struktur geometri sebuah molekul air.Model ruang-terisi menggambarkan struktur molekul air.
Informasi dan sifat-sifat
Nama sistematis air
Nama alternatif aqua, dihidrogen monoksida,
Hidrogen hidroksida
Rumus molekul H2O
Massa molar 18.0153 g/mol
Densitas dan fase 0.998 g/cm³ (cariran pada 20 °C)
0.92 g/cm³ (padatan)
Titik lebur 0 °C (273.15 K) (32 °F)
Titik didih 100 °C (373.15 K) (212 °F)
Kalor jenis 4184 J/(kg·K) (cairan pada 20 °C)
Halaman data tambahan
Disclaimer and references

Artikel utama: Air (molekul)

Air adalah substansi kimia dengan rumus kimia H2O: satu molekul air tersusun atas dua atom hidrogen yang terikat secara kovalen pada satu atom oksigen. Air bersifat tidak berwarna, tidak berasa dan tidak berbau pada kondisi standar, yaitu pada tekanan 100 kPa (1 bar) and temperatur 273,15 K (0 °C). Zat kimia ini merupakan suatu pelarut yang penting, yang memiliki kemampuan untuk melarutkan banyak zat kimia lainnya, seperti garam-garam, gula, asam, beberapa jenis gas dan banyak macam molekul organik.

Keadaan air yang berbentuk cair merupakan suatu keadaan yang tidak umum dalam kondisi normal, terlebih lagi dengan memperhatikan hubungan antara hidrida-hidrida lain yang mirip dalam kolom oksigen pada tabel periodik, yang mengisyaratkan bahwa air seharusnya berbentuk gas, sebagaimana hidrogen sulfida. Dengan memperhatikan tabel periodik, terlihat bahwa unsur-unsur yang mengelilingi oksigen adalah nitrogen, flor, dan fosfor, sulfur dan klor. Semua elemen-elemen ini apabila berikatan dengan hidrogen akan menghasilkan gas pada temperatur dan tekanan normal. Alasan mengapa hidrogen berikatan dengan oksigen membentuk fasa berkeadaan cair, adalah karena oksigen lebih bersifat elektronegatif ketimbang elemen-elemen lain tersebut (kecuali flor). Tarikan atom oksigen pada elektron-elektron ikatan jauh lebih kuat dari pada yang dilakukan oleh atom hidrogen, meninggalkan jumlah muatan positif pada kedua atom hidrogen, dan jumlah muatan negatif pada atom oksigen. Adanya muatan pada tiap-tiap atom tersebut membuat molekul air memiliki sejumlah momen dipol. Gaya tarik-menarik listrik antar molekul-molekul air akibat adanya dipol ini membuat masing-masing molekul saling berdekatan, membuatnya sulit untuk dipisahkan dan yang pada akhirnya menaikkan titik didih air. Gaya tarik-menarik ini disebut sebagai ikatan hidrogen.

Air sering disebut sebagai pelarut universal karena air melarutkan banyak zat kimia. Air berada dalam kesetimbangan dinamis antara fase cair dan padat di bawah tekanan dan temperatur standar. Dalam bentuk ion, air dapat dideskripsikan sebagai sebuah ion hidrogen (H+) yang berasosiasi (berikatan) dengan sebuah ion hidroksida (OH-).
Tingginya konsentrasi kapur terlarut membuat warna air dari Air Terjun Havasu terlihat berwarna turquoise.
[sunting] Elektrolisis air

Artikel utama: Elektrolisis air

Molekul air dapat diuraikan menjadi unsur-unsur asalnya dengan mengalirinya arus listrik. Proses ini disebut elektrolisis air. Pada katoda, dua molekul air bereaksi dengan menangkap dua elektron, tereduksi menjadi gas H2 dan ion hidrokida (OH-). Sementara itu pada anoda, dua molekul air lain terurai menjadi gas oksigen (O2), melepaskan 4 ion H+ serta mengalirkan elektron ke katoda. Ion H+ dan OH- mengalami netralisasi sehingga terbentuk kembali beberapa molekul air. Reaksi keseluruhan yang setara dari elektrolisis air dapat dituliskan sebagai berikut.

\mbox{ }2H_{2}O(l) \rightarrow 2H_{2}(g) + O_{2}(g)\,

Gas hidrogen dan oksigen yang dihasilkan dari reaksi ini membentuk gelembung pada elektroda dan dapat dikumpulkan. Prinsip ini kemudian dimanfaatkan untuk menghasilkan hidrogen dan hidrogen peroksida (H2O2) yang dapat digunakan sebagai bahan bakar kendaraan hidrogen.[8][9][10]
[sunting] Kelarutan (solvasi)

Air adalah pelarut yang kuat, melarutkan banyak jenis zat kimia. Zat-zat yang bercampur dan larut dengan baik dalam air (misalnya garam-garam) disebut sebagai zat-zat "hidrofilik" (pencinta air), dan zat-zat yang tidak mudah tercampur dengan air (misalnya lemak dan minyak), disebut sebagai zat-zat "hidrofobik" (takut-air). Kelarutan suatu zat dalam air ditentukan oleh dapat tidaknya zat tersebut menandingi kekuatan gaya tarik-menarik listrik (gaya intermolekul dipol-dipol) antara molekul-molekul air. Jika suatu zat tidak mampu menandingi gaya tarik-menarik antar molekul air, molekul-molekul zat tersebut tidak larut dan akan mengendap dalam air.
Butir-butir embun menempel pada jaring laba-laba.
[sunting] Kohesi dan adhesi

Air menempel pada sesamanya (kohesi) karena air bersifat polar. Air memiliki sejumlah muatan parsial negatif (σ-) dekat atom oksigen akibat pasangan elektron yang (hampir) tidak digunakan bersama, dan sejumlah muatan parsial positif (σ+) dekat atom oksigen. Dalam air hal ini terjadi karena atom oksigen bersifat lebih elektronegatif dibandingkan atom hidrogen—yang berarti, ia (atom oksigen) memiliki lebih "kekuatan tarik" pada elektron-elektron yang dimiliki bersama dalam molekul, menarik elektron-elektron lebih dekat ke arahnya (juga berarti menarik muatan negatif elektron-elektron tersebut) dan membuat daerah di sekitar atom oksigen bermuatan lebih negatif ketimbang daerah-daerah di sekitar kedua atom hidrogen.

Air memiliki pula sifat adhesi yang tinggi disebabkan oleh sifat alami ke-polar-annya.
[sunting] Tegangan permukaan
Bunga daisy ini berada di bawah permukaan air, akan tetapi dapat mekar dengan tanpa terganggu. Tegangan permukaan mencegah air untuk menenggelamkan bunga tersebut.

Air memiliki tegangan permukaan yang besar yang disebabkan oleh kuatnya sifat kohesi antar molekul-molekul air. Hal ini dapat diamati saat sejumlah kecil air ditempatkan dalam sebuah permukaan yang tak dapat terbasahi atau terlarutkan (non-soluble); air tersebut akan berkumpul sebagai sebuah tetesan. Di atas sebuah permukaan gelas yang amat bersih atau bepermukaan amat halus air dapat membentuk suatu lapisan tipis (thin film) karena gaya tarik molekular antara gelas dan molekul air (gaya adhesi) lebih kuat ketimbang gaya kohesi antar molekul air.

Dalam sel-sel biologi dan organel-organel, air bersentuhan dengan membran dan permukaan protein yang bersifat hidrofilik; yaitu, permukaan-permukaan yang memiliki ketertarikan kuat terhadap air. Irvin Langmuir mengamati suatu gaya tolak yang kuat antar permukaan-permukaan hidrofilik. Untuk melakukan dehidrasi suatu permukaan hidrofilik — dalam arti melepaskan lapisan yang terikat dengan kuat dari hidrasi air — perlu dilakukan kerja sungguh-sungguh melawan gaya-gaya ini, yang disebut gaya-gaya hidrasi. Gaya-gaya tersebut amat besar nilainya akan tetapi meluruh dengan cepat dalam rentang nanometer atau lebih kecil. Pentingnya gaya-gaya ini dalam biologi telah dipelajari secara ekstensif oleh V. Adrian Parsegian dari National Institute of Health.[11] Gaya-gaya ini penting terutama saat sel-sel terdehidrasi saat bersentuhan langsung dengan ruang luar yang kering atau pendinginan di luar sel (extracellular freezing).
[sunting] Air dalam kehidupan
Kehidupan di dalam laut.

Dari sudut pandang biologi, air memiliki sifat-sifat yang penting untuk adanya kehidupan. Air dapat memunculkan reaksi yang dapat membuat senyawa organic untuk melakukan replikasi. Semua makhluk hidup yang diketahui memiliki ketergantungan terhadap air. Air merupakan zat pelarut yang penting untuk makhluk hidup dan adalah bagian penting dalam proses metabolisme. Air juga dibutuhkan dalam fotosintesis dan respirasi. Fotosintesis menggunakan cahaya matahari untuk memisahkan atom hidroden dengan oksigen. Hidrogen akan digunakan untuk membentuk glukosa dan oksigen akan dilepas ke udara.
[sunting] Makhluk air

Artikel utama: Hidrobiologi

Perairan bumi dipenuhi dengan berbagai macam kehidupan. Semua makhluk hidup pertama di Bumi ini berasal dari perairan. Hampir semua ikan hidup di dalam air, selain itu, mamalia seperi lumba-lumba dan ikan paus juga hidup di dalam air. Hewan-hewan seperti amfibi menghabiskan sebagian hidupnya di dalam air. Bahkan, beberapa reptil seperti ular dan buaya hidup di perairan dangkal dan lautan. Tumbuhan laut seperti alga dan rumput laut menjadi sumber makanan ekosistem perairan. Di samudera, plankton menjadi sumber makanan utama para ikan.
[sunting] Air dan manusia

Peradaban manusia berjaya mengikuti sumber air. Mesopotamia yang disebut sebagai awal peradaban berada di antara sungai Tigris dan Euphrates. Peradaban Mesir Kuno bergantung pada sungai Nil. Pusat-pusat manusia yang besar seperti Rotterdam, London, Montreal, Paris, New York City, Shanghai, Tokyo, Chicago, dan Hong Kong mendapatkan kejayaannya sebagian dikarenakan adanya kemudahan akses melalui perairan.
[sunting] Air minum
Air yang diminum dari botol.

Artikel utama: Air minum

Tubuh manusia terdiri dari 55% sampai 78% air, tergantung dari ukuran badan.[12] Agar dapat berfungsi dengan baik, tubuh manusia membutuhkan antara satu sampai tujuh liter air setiap hari untuk menghindari dehidrasi; jumlah pastinya bergantung pada tingkat aktivitas, suhu, kelembaban, dan beberapa faktor lainnya. Selain dari air minum, manusia mendapatkan cairan dari makanan dan minuman lain selain air. Sebagian besar orang percaya bahwa manusia membutuhkan 8–10 gelas (sekitar dua liter) per hari,[13] namun hasil penelitian yang diterbitkan Universitas Pennsylvania pada tahun 2008 menunjukkan bahwa konsumsi sejumlah 8 gelas tersebut tidak terbukti banyak membantu dalam menyehatkan tubuh. [14] Malah kadang-kadang untuk beberapa orang, jika meminum air lebih banyak atau berlebihan dari yang dianjurkan dapat menyebabkan ketergantungan. Literatur medis lainnya menyarankan konsumsi satu liter air per hari, dengan tambahan bila berolahraga atau pada cuaca yang panas.[15]
[sunting] Pelarut

Pelarut digunakan sehari-hari untuk mencuci, contohnya mencuci tubuh manusia, pakaian, lantai, mobil, makanan, dan hewan. Selain itu, limbah rumah tangga juga dibawa oleh air melalui saluran pembuangan. Pada negara-negara industri, sebagian besar air terpakai sebagai pelarut.

Air dapat memfasilitasi proses biologi yang melarutkan limbah. Mikroorganisme yang ada di dalam air dapat membantu memecah limbah menjadi zat-zat dengan tingkat polusi yang lebih rendah.
[sunting] Zona biologis

Air merupakan cairan singular, oleh karena kapasitasnya untuk membentuk jaringan molekul 3 dimensi dengan ikatan hidrogen yang mutual. Hal ini disebabkan karena setiap molekul air mempunyai 4 muatan fraksional dengan arah tetrahedron, 2 muatan positif dari kedua atom hidrogen dan dua muatan negatif dari atom oksigen.[16] Akibatnya, setiap molekul air dapat membentuk 4 ikatan hidrogen dengan molekul disekitarnya. Sebagai contoh, sebuah atom hidrogen yang terletak diantara dua atom oksigen, akan membentuk satu ikatan kovalen dengan satu atom oksigen dan satu ikatan hidrogen dengan atom oksigen lainnya, seperti yang terjadi pada es. Perubahan densitas molekul air akan berpengaruh pada kemampuannya untuk melarutkan partikel. Oleh karena sifat muatan fraksional molekul, pada umumnya, air merupakan zat pelarut yang baik untuk partikel bermuatan atau ion, namun tidak bagi senyawa hidrokarbon.

Konsep tentang sel sebagai larutan yang terbalut membran, pertama kali dipelajari oleh ilmuwan Rusia bernama Troschin pada tahun 1956. Pada monografnya, Problems of Cell Permeability, tesis Troschin mengatakan bahwa partisi larutan yang terjadi antara lingkungan intraselular dan ekstraselular tidak hanya ditentukan oleh permeabilitas membran, namun terjadi akumulasi larutan tertentu di dalam protoplasma, sehingga membentuk larutan gel yang berbeda dengan air murni.

Pada tahun 1962, Ling melalui monografnya, A physical theory of the living state, mengutarakan bahwa air yang terkandung di dalam sel mengalami polarisasi menjadi lapisan-lapisan yang menyelimuti permukaan protein dan merupakan pelarut yang buruk bagi ion. Ion K+ diserap oleh sel normal, sebab gugus karboksil dari protein cenderung untuk menarik K+ daripada ion Na+. Teori ini, dikenal sebagai hipotesis induksi-asosiasi juga mengutarakan tidak adanya pompa kation, ATPase, yang terikat pada membran sel, dan distribusi semua larutan ditentukan oleh kombinasi dari gaya tarik menarik antara masing-masing protein dengan modifikasi sifat larutan air dalam sel. Hasil dari pengukuran NMR memang menunjukkan penurunan mobilitas air di dalam sel namun dengan cepat terdifusi dengan molekul air normal. Hal ini kemudian dikenal sebagai model two-fraction, fast-exchange.

Keberadaan pompa kation yang digerakkan oleh ATP pada membran sel, terus menjadi bahan perdebatan, sejalan dengan perdebatan tentang karakteristik cairan di dalam sitoplasma dan air normal pada umumnya. Argumentasi terkuat yang menentang teori mengenai jenis air yang khusus di dalam sel, berasal dari kalangan ahli kimiawan fisis. Mereka berpendapat bahwa air di dalam sel tidak mungkin berbeda dengan air normal, sehingga perubahan struktur dan karakter air intraselular juga akan dialami dengan air ekstraselular. Pendapat ini didasarkan pada pemikiran bahwa, meskipun jika pompa kation benar ada terikat pada membran sel, pompa tersebut hanya menciptakan kesetimbangan osmotik selular yang memisahkan satu larutan dari larutan lain, namun tidak bagi air. Air dikatakan memiliki kesetimbangan sendiri yang tidak dapat dibatasi oleh membran sel.

Para ahli lain yang berpendapat bahwa air di dalam sel sangat berbeda dengan air pada umumnya. Air yang menjadi tidak bebas bergerak oleh karena pengaruh permukaan ionik, disebut sebagai air berikat (bahasa Inggris: bound water), sedangkan air diluar jangkauan pengaruh ion tersebut disebut air bebas (bahasa Inggris: bulk water).

Air berikat dapat segera melarutkan ion, oleh karena tiap jenis ion akan segera tertarik oleh masing-masing muatan fraksional molekul air, sehingga kation dan anion dapat berada berdekatan tanpa harus membentuk garam. Ion lebih mudah terhidrasi oleh air yang reaktif, padat dengan ikatan lemah, daripada air inert tidak padat dengan daya ikat kuat. Hal ini menciptakan zona air, sebagai contoh, kation kecil yang sangat terhidrasi akan cenderung terakumulasi pada fasa air yang lebih padat, sedangkan kation yang lebih besar akan cenderung terakumulasi pada fasa air yang lebih renggang, dan menciptakan partisi ion seperti serial Hofmeister sebagai berikut:

Mg2+ > Ca2+ > H+ >> Na+

NH+ > Cs+ > Rb+ > K+

ATP3- >> ATP2- = ADP2- = HPO42-

I- > Br- > Cl- > H2PO4-

catatan

densitas air berikat semakin tinggi ke arah kanan.

Interaksi antara molekul air berikat dan gugus ionik diasumsikan terjadi pada rentang jarak yang pendek, sehingga atom hidrogen terorientasi ke arah anion dan menghambat interaksi antara populasi air berikat dengan air bebas. Orientasi molekul air berikat semakin terbatas permukaan molekul polielektrolit bermuatan negatif antara lain DNA, RNA, asam hialorunat, kondroitin sulfat, dan jenis biopolimer bermuatan lain. Energi elektrostatik antara molekul biopolimer bermuatan sama yang berdesakan akan menciptakan gaya hidrasi yang mendorong molekul air bebas keluar dari dalam sitoplasma.

Pada umumnya, konsenstrasi larutan polielektrolit yang cukup tinggi akan membentuk gel. Misalnya gel agarose atau gel dari asam hialuronat yang mengandung 99,9% air dari total berat gel. Tertahannya molekul air di dalam struktur kristal gel merupakan salah satu contoh kecenderungan alami setiap komponen dari suatu sistem untuk bercampur dengan merata. Molekul air dapat terlepas dari gel sebagai respon dari tekanan udara, peningkatan suhu atau melalui mekanisme penguapan, namun dengan turunnya rasio kandungan air, daya ikat ionik yang terjadi antara molekul zat terlarut yang menahan molekul air akan semakin kuat.

Meskipun demikian, pendekatan ionik seperti ini masih belum dapat menjelaskan beberapa fenomena anomali larutan seperti,

perbedaan sifat air di dalam sitoplasma oosit hewan katak dengan air di dalam inti sel dan air normal
turunnya koefisien difusi air di dalam Artemia cyst dibandingkan dengan koefisien air yang sama pada gel agarose dan air normal
lebih rendahnya densitas air pada Artemia cyst dibandingkan air normal pada suhu yang sama
anomali trimetilamina oksida pada jaringan otot
kedua kandungan air normal, dan air dengan koefisien partisi 1,5 yang dimiliki mitokondria pada suhu 0-4 °C

Fenomena anomali larutan ini dianggap terjadi pada rentang jarak jauh yang berada di luar domain pendekatan ionik.

Energi pada molekul air menjadi tinggi ketika ikatan hidrogen yang dimiliki menjadi tidak maksimal, seperti saat molekul air berada dekat dengan permukaan atau gugus hidrokarbon. Senyawa hidrokarbon kemudian disebut bersifat hidrofobik sebab tidak membentuk ikatan hidrogen dengan molekul air. Daya ikat hidrogen pada kondisi ini akan menembus beberapa zona air dan partisi ion, sehingga dikatakan bahwa sebagai karakter air pada rentang jarak jauh. Pada rentang ini, molekul garam seperti Na2SO4, sodium asetat dan sodium fosfat akan memiliki kecenderungan untuk terurai menjadi kation Na+ dan anionnya.
[sunting] Air dalam kesenian
"Ombak Besar Lepas Pantai Kanagawa." oleh Katsushika Hokusai, lukisan yang sering digunakan sebagai pelukisan sebuah tsunami.

Artikel utama: Air dalam kesenian

Dalam seni air dipelajari dengan cara yang berbeda, ia disajikan sebagai suatu elemen langsung, tidak langsung ataupun hanya sebagai simbol. Dengan didukung kemajuan teknologi fungsi dan pemanfaatan air dalam seni mulai berubah, dari tadinya pelengkap ia mulai merambat menjadi obyek utama. Contoh seni yang terakhir ini, misalnya seni aliran atau tetesan (sculpture liquid atau droplet art).[17]
[sunting] Seni lukis

Pada zaman Renaisans dan sesudahnya air direpresentasikan lebih realistis. Banyak artis menggambarkan air dalam bentuk pergerakan - sebuah aliran air atau sungai, sebuah lautan yang turbulensi, atau bahkan air terjun - akan tetapi banyak juga dari mereka yang senang dengan obyek-obyek air yang tenang, diam - danau, sungai yang hampir tak mengalir, dan permukaan laut yang tak berombak. Dalam setiap kasus ini, air menentukan suasana (mood) keseluruhan dari karya seni tersebut,[18] seperti misalnya dalam Birth of Venus (1486) karya Botticelli[19] dan The Water Lilies (1897) karya Monet.[20]
Rivermasterz, memanfaatkan air sebagai elemen dalam foto.
[sunting] Fotografi

Sejalan dengan kemajuan teknologi dalam seni, air mulai mengambil tempat dalam bidang seni lain, misalnya dalam fotografi. walaupun ada air tidak memiliki arti khusus di sini dan hanya berperan sebagai elemen pelengkap, akan tetapi ia dapat digunakan dalam hampir semua cabang fotografi: mulai dari fasion sampai landsekap. Memotret air sebagai elemen dalam obyek membutuhkan penanganan khusus, mulai dari filter circular polarizer yang berguna menghilangkan refleksi, sampai pemanfaatan teknik long exposure, suatu teknik fotografi yang mengandalkan bukaan rana lambat untuk menciptakan efek lembut (soft) pada permukaan air.[21]
[sunting] Seni tetesan air
!Artikel utama untuk bagian ini adalah: Seni tetesan air

Keindahan tetesan air yang memecah permukaan air yang berada di bawahnya diabadikan dengan berbagai sentuhan teknik dan rasa menjadikannya suatu karya seni yang indah, seperti yang disajikan oleh Martin Waugh dalam karyanya Liquid Sculpture, suatu antologi yang telah mendunia.[22]

Seni tetesan air tidak berhenti sampai di sini, dengan pemanfaatan teknik pengaturan terhadap jatuhnya tetesan air yang malar, mereka dapat diubah sedemikian rupa sehingga tetesan-tetesan tersebut sebagai satu kesatuan berfungsi sebagai suatu penampil (viewer) seperti halnya tampilan komputer. Dengan mengatur-atur ukuran dan jumlah tetesan yang akan dilewatkan, dapat sebuah gambar ditampilkan oleh tetesan-tetesan air yang jatuh. Sayangnya gambar ini hanya bersifat sementara, sampai titik yang dimaksud jatuh mencapai bagian bawah penampil.[23] Komersialisasi karya jenis ini pun dalam bentuk resolusi yang lebih kasar telah banyak dilakukan.[24][25]
[sunting] Sains semu air
Ikatan hidrogen antar molekul air yang membuatnya dapat membentuk kelompok atau klaster,

Profesor Masaru Emoto, seorang peneliti dari Hado Institute di Tokyo, Jepang pada tahun 2003 melalui penelitiannya mengungkapkan suatu keanehan pada sifat air. Melalui pengamatannya terhadap lebih dari dua ribu contoh foto kristal air yang dikumpulkannya dari berbagai penjuru dunia, Emoto menemukan bahwa partikel molekul air ternyata bisa berubah-ubah tergantung perasaan manusia disekelilingnya,[26] yang secara tidak langsung mengisyaratkan pengaruh perasaan terhadap klasterisasi molekul air yang terbentuk oleh adanya ikatan hidrogen,

Emoto juga menemukan bahwa partikel kristal air terlihat menjadi "indah" dan "mengagumkan" apabila mendapat reaksi positif disekitarnya, misalnya dengan kegembiraan dan kebahagiaan. Namun partikel kristal air terlihat menjadi "buruk" dan "tidak sedap dipandang mata" apabila mendapat efek negatif disekitarnya, seperti kesedihan dan bencana. Lebih dari dua ribu buah foto kristal air terdapat didalam buku Message from Water (Pesan dari Air) yang dikarangnya sebagai pembuktian kesimpulan nya sehingga hal ini berpeluang menjadi suatu terobosan dalam meyakini keajaiban alam. Emoto menyimpulkan bahwa partikel air dapat dipengaruhi oleh suara musik, doa-doa dan kata-kata yang ditulis dan dicelupkan ke dalam air tersebut.[27]

Sampai sekarang Emoto dan karyanya masih dianggap kontroversial.[28][29][30][31] Ernst Braun dari Burgistein di Thun, Swiss, telah mencoba dalam laboratoriumnya metoda pembuatan foto kristal seperti yang diungkapan oleh Emoto, sayangnya hasil tersebut tidak dapat direproduksi kembali, walaupun dalam kondisi percobaan yang sama.[32]

TERMODINAMIKA

Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.
Usaha Luar
Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.
W = p∆V= p(V2 – V1)
Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai
Tekanan dan volume dapat diplot dalam grafik p – V. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik p – V, usaha yang dilakukan gas merupakan luas daerah di bawah grafik p – V. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.
Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.
Energi Dalam
Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.
Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai
untuk gas monoatomik

untuk gas diatomik

Dimana ∆U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan ∆T adalah perubahan suhu gas (dalam kelvin).
Hukum I Termodinamika
Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.
Gambar
Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai
Q = W + ∆U
Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.
Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam ∆U.
Proses Isotermik
Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).
Proses isotermik dapat digambarkan dalam grafik p – V di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai
Dimana V2 dan V1 adalah volume akhir dan awal gas.

Proses Isokhorik
Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.
QV = ∆U
Proses Isobarik
Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = p∆V). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku
Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan
QV =∆U
Dari sini usaha gas dapat dinyatakan sebagai
W = Qp − QV
Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).

Proses Adiabatik
Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = ∆U).
Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai
Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).

Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang lebih curam.

Kalor Dan Perubahan Wujud

Seperti yang kita ketahui bersama bahwa energi kalor dapat mengubah wujud suatu benda, dalam hal ini saya akan menggunakan air sebagai contohnya.
Air dalam suhu yang amat rendah (-40o Celcius ) akan berbentuk sebagai es yang berwujud padat, sedangkan pada suhu 0o Celcius air akan mengalami perubahan wujud dari padat ( es ) menjadi cair. Suhu air akan terus mengalami kenaikan ketika dipanaskan, yang pada akhirnya hinga di titik 100o Celcius akan mengalami perubahan wujud dari cair menjadi gas ( uap air ).
Untuk lebih jelasnya silahkan lihat gambar dibawah :

Gambar diatas menunjukkan grafik perubahan wujud air mulai dari fase es pada suhu -40o Celcius hingga menjadi uap air pada suhu 120o Celcius.
Perhatikan grafik yang diberi warna merah dan hijau !! Hal ini dimaksudkan untuk membedakan antara fase dimana air mengalami kenaikan suhu dan fase dimana air mengalami perubahan wujud.
Pelu diingat bahwa :
1. Ketika air mengalami perubahan wujud maka air TIDAK mengalami perubahan suhu.
2. Sedangkan, ketika air mengalami perubahan suhu maka air TIDAK mengalami perubahan wujud.
dikarenakan hal ini maka kita mengenal dua jenis rumus untuk menghitung besarnya energi kalor.
energi kalor dilambangkan dengan huruf Q dengan satuan Joule ( J ).
Q = M. C. Δ T    ( digunakan untuk menghitung energi kalor pada fase kenaikan suhu )
ket :
M     = Massa ( Kg )
C     = Kalor Jenis ( J/KgC )
Δ T  = Perubahan Suhu ( C )
Kalor jenis adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu 1 kg zat sebesar 1 derajat celcius. Alat yang digunakan untuk menentukan besar kalor jenis adalah kalorimeter.
Q  = M. L     ( digunakan untuk menghitung energi kalor pada fase perubahan wujud )
ket :
M     = Massa ( Kg )
L      = Kalor Laten ( J/Kg )
Kalor Laten adalah kalor yang digunakan untuk mengubah wujud suatu zat. Kalor laten ada dua macam Q = m.U dan Q = m.L. Dengan U adalah kalor uap (J/kg) dan L adalah kalor lebur (J/kg)
contoh soal :
Tentukan energi kalor yang dibutuhkan untuk memanaskan es yang memiliki massa 2 Kg dan bersuhu -20o Celcius hingga menjadi air yang bersuhu 70o Celcius ( Kalor jenis air = 4.200 Joule/kg°C, Kalor lebur es = 334.000 J/kg, Kalor jenis es= 2.090 Joule/kg°C )
Pembahasan :
Untuk mengerjakan soal ini, maka kamu harus mengetahui bahwa ada tiga fase yang terjadi :
1. Fase perubahan suhu es dari -20o C menjadi es bersuhu 0o C.
2. Fase perubahan wujud es menjadi air pada suhu 0o C.
3. Fase perubahan suhu air dari 0o C menjadi es bersuhu 70o C.
Maka kita harus menghitung satu per satu energi kalor dari setiap fase.
Fase 1 :
Q1 = M. C. Δ T
Q1 = 2 x 2.090 x 20    << menggunakan kalor jenis es bukan kalor jenis air
Q1 = 83.600 Joule
Fase 2 :
Q2 = M. L
Q2 = 2 x 334.000
Q2 = 668.000 Joule
Fase 3 :
Q3 = M. C. Δ T
Q3 = 2 x 4.200 x 70   << baru menggunakan kalor jenis air
Q3 = 588.000 Joule
Maka kita jumlahkan hasil dari ketiga fase tersebut dan didapatkan hasil akhir senilai :
83.600 + 668.000 + 588.000 = 1.339.600 Joule

PERPINDAHAN KALOR

alor dapat berpindah dari satu tempat ke tempat lain. Bagaimanakah cara kalor itu berpindah? Kalor dapat berpindah dengan tiga cara, yaitu konduksi atau hantaran, konveksi atau aliran, dan radiasi atau pancaran.
1. Konduksi
    Bagaimanakah perpindahan kalor secara konduksi? Lakukan kegiatan berikut!

Konduksi adalah perpindahan kalor melalui suatu zat tanpa disertai perpindahan partikel-partikel zat tersebut.
Berdasarkan daya hantar kalor, benda dibedakan menjadi dua, yaitu:
1) Konduktor
Konduktor adalah zat yang memiliki daya hantar kalor baik. Contoh : besi, baja, tembaga, aluminium, dll
2) Isolator
Isolator adalah zat yang memiliki daya hantar kalor kurang baik. Contoh : kayu, plastik, kertas, kaca, air, dll
Dalam kehidupan sehari-hari, dapat kamu jumpai peralatan rumah tangga yang prinsip kerjanya memanfaatkan konsep perpindahan kalor secara konduksi, antara lain : setrika listrik, solder. Mengapa alat-alat rumah tangga seperti setrika, solder, panci, wajan terdapat pegangan dari bahan isolator? Hal ini bertujuan untuk menghambat konduksi panas supaya tidak sampai ke tangan kita.
2. Konveksi
 Konveksi adalah perpindahan kalor pada suatu zat yang disertai perpindahan partikel-partikel zat tersebut.
Konveksi terjadi karena perbedaan massa jenis zat. Kamu dapat memahami peristiwa konveksi, antara lain:
1) Pada zat cair karena perbedaan massa jenis zat, misal sistem pemanasan air, sistem aliran air panas.
2) Pada zat gas karena perbedaan tekanan udara, misal terjadinya angin darat dan angin laut, sistem ventilasi udara, untuk mendapatkan udara yang lebih dingin dalam ruangan dipasang AC atau kipas angin, dan cerobong asap pabrik.
Agar kamu lebih dapat memahami konveksi, lakukan kegiatan berikut!

Dari kegiatan yang kamu lakukan dapat ditarik kesimpulan bahwa, aliran di dalam gelas disebabkan karena perbedaan massa jenis zat. Air yang menyentuh bagian bawah gelas kimia tersebut dipanasi dengan cara konduksi. Akibat air menerima kalor, maka air akan memuai dan menjadi kurang rapat. Air yang lebih rapat pada bagian atas itu turun mendorong air panas menuju ke atas. Gerakan ini menimbulkan arus kon-veksi. Pada bagian zat cair yang dipanaskan akan memiliki massa  jenis menurun sehingga mengalir naik ke atas. Pada bagian tepi zat cair yang dipanaskan konveksi yang terjadi seperti ditunjukkan pada gambar di bawah ini.

Pada bagian tengah zat cair yang dipanaskan, konveksi yang terjadi seperti ditunjukkan pada gambar berikut.


Dari kegiatan yang kamu lakukan terlihat bahwa asap turun di dalam cerobong yang tidak dipanaskan. Pada cerobong yang dipanaskan tekanan udara kecil sehingga asap akan bergerak naik ke atas. Aliran udara yang terlihat itulah yang menunjukkan konveksi pada zat gas. Tahukah kamu mengapa cerobong asap pabrik di buat tinggi? Coba kamu cari tahu alasannya! Angin laut dan angin darat merupakan contoh peristiwa alam yang melibatkan arus konveksi pada zat gas. Tahukah kamu bagaimana terjadinya angin laut dan angin darat? Coba perhatikan gambar di bawah ini!
 
Pada siang hari daratan lebih cepat panas daripada lautan. Hal ini mengakibatkan udara panas di daratan akan naik dan tempat tersebut diisi oleh udara dingin dari permukaan laut, sehingga terjadi gerakan udara dari laut menuju ke darat yang biasa disebut angin laut. Angin laut terjadi pada siang hari, biasa digunakan oleh nelayan tradisional untuk pulang ke daratan. Bagaimanakah angin darat terjadi?
 
 
 
 
 
 
 
 
 
Pada malam hari daratan lebih cepat dingin daripada lautan. Hal ini mengakibatkan udara panas di permukaan air laut akan naik dan tempat tersebut diisi oleh udara dingin dari daratan, sehingga terjadi gerakan udara dari darat menuju ke laut yang biasa disebut angin darat. Angin darat terjadi pada malam hari, biasa digunakan oleh nelayan tradisional untuk melaut mencari ikan.
3. Radiasi atau pancaran
Radiasi adalah perpindahan kalor tanpa melalui zat perantara. Saat acara api unggun pada kegiatan Pramuka di sekolahmu, apa yang dapat kamu rasakan saat kamu berada di sekitar nyala api unggun? Kamu akan merasakan hangatnya api unggun dari jarak berjauhan. Bagaimanakah panas api unggun dapat sampai ke badanmu? Kalor yang kamu terima dari nyala api unggun disebabkan oleh energi pancaran. Alat yang digunakan untuk mengetahui adanya radiasi kalor atau energi pancaran kalor disebut termoskop. Termoskop terdiri dari dua buah bola kaca yang dihubungkan dengan pipa U berisi air alkohol yang diberi pewarna. Perhatikan gambar!

Salah satu bola lampu dicat hitam, sedangkan yang lain dicat putih. Apabila pancaran kalor mengenai bola A, hal ini mengakibatkan tekanan gas pada bola A menjadi besar. Hal ini mengakibatkan turunnya permukaan zat cair yang ada di bawahnya. Bagaimanakah sifat radiasi dari berbagai permukaan? Sifat radiasi berbagai permukaan dapat diselidiki dengan menggunakan alat termoskop diferensial. Alat yang digunakan untuk menyelidiki sifat radiasi berbagai permukaan disebut termoskop diferensial. Kedua bola lampu dicat dengan warna yang sama, tetapi di antara bola tersebut diletakkan bejana kubus yang salah satu sisinya permukaannya hitam kusam dan sisi lainnya mengkilap. Jika bejana kubus diisi dengan air panas, akan terlihat permukaan alkohol di bawah bola B turun.  Perbedaan ini disebabkan karena kalor yang diserap bola B lebih besar daripada bola A. Dari hasil pengamatan yang dilakukan dapat ditarik kesimpulan bahwa:
1) Permukaan benda hitam, kusam, dan kasar merupakan pemancar dan penyerap kalor yang baik.
2) Permukaan benda putih, mengkilap dan halus merupakan pemancar dan penyerap kalor yang buruk

RUMUS TENTANG KALOR

Kalor jenis
Rumus:

dengan ketentuan:
= Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
= Massa zat (Gram, Kilogram)
= Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
= Perubahan suhu (°C) → (t2 - t1)
Untuk mencari kalor jenis, rumusnya adalah:

Untuk mencari massa zat, rumusnya adalah:

[sunting] Kapasitas kalor
Kapasitas kalor adalah banyaknya kalor yang dibutuhkan oleh benda untuk menaikkan suhunya 1°C.
Rumus kapasitas kalor:





dengan syarat:
= Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
= Kapasitas kalor (Joule/°C)
= Massa zat (Gram, Kilogram)
= Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
= Perubahan suhu (°C) → (t2 - t1)
contoh soal: sebuah zat dipanaskan dari suhu 10°C menjadi 35°C. Kalor yang dikeluarkan adalah 5000 Joule. Jika masa zat adalah 20 kg. Berapakah masa jenis dan kapasitas kalor zat tersebut? Jawab  : Diketahui:
t1 =10°C
t2 =35°C
Q =5000 J
m =20 kg
Ditanya  :b. Kapasitas kalor (H)
a. Masa jenis (c)
delta t = t2-t1
= 35°-10°
= 25°
c = Q/m × delta t
c = 5000/20 × 25
c =250 ×25
c =6250 J/kg C°
H = m × c
= 20kg × 6250 J/kg C°
= 125000 J/ C°
[sunting] Kalor lebur
Rumus:

dengan ketentuan:
= Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
= Massa zat (Gram, Kilogram)
= Kalor lebur zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)
[sunting] Kalor uap
Rumus:

dengan ketentuan:
= Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
= Massa zat (Gram, Kilogram)
= Kalor uap zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)
Contoh Soal :
Berapa energi kalor yang diperlukan untuk menguapkan 5 Kg air pada titik didihnya, jika kalor uap 2.260.000 Joule/Kilogram ?
Jawab :
Diketahui  : m = 5 Kg
             U = 2.260.000 J/Kg

Ditanyakan : Q =..... ?

Jawab Q = m x U
        = 5 Kg x 2.260.000 J/Kg
        = 11.300.000 J
        = 11,3 x 106 J
Asas Black
Rumus:
Asas Black : Jumlah kalor yang diterima sama dengan jumlah kalor yang dilepas..

Panas

Kalor adalah bentuk energi yang berpindah dari suhu tinggi ke suhu rendah. Jika suatu benda menerima / melepaskan kalor maka suhu benda itu akan naik/turun atau wujud benda berubah.

BEBERAPA PENGERTIAN KALOR

1 kalori adalah kalor yang dibutuhkan untuk menaikkan suhu 1 gram air sebesar 1ºC.

1 kalori = 4.18 joule
1 joule = 0.24 kalori
Kapasitas kalor (H)

adalah banyaknya kalor yang dibutuhkan oleh zat untuk menaikkan suhunya 1ºC (satuan kalori/ºC).


Kalor jenis (c) adalah banyaknya kalor yang dibutuhkan untuk menaikkan 1 gram atau 1 kg zat sebesar 1ºC (satuan kalori/gram.ºC atau kkal/kg ºC).



Kalor yang digunakan untuk menaikkan/menurunkan suhu tanpa mengubah wujud zat:

Q = H . Dt
Q = m . c . Dt
H = m . c

Q = kalor yang di lepas/diterima
H = kapasitas kalor
Dt = kenaikan/penurunan suhu
m = massa benda
c= kalor jenis

Kalor yang diserap/dilepaskan (Q) dalam proses perubahan wujud benda:

Q = m . L

m = massa benda kg
L = kalor laten (kalor lebur, kalor beku. kalor uap,kalor embun, kalor sublim, kalor lenyap) ® t/kg

Jadi kalor yang diserap ( â ) atau yang dilepas ( á ) pada saat terjadi perubahan wujud benda tidak menyebabkan perubahan suhu benda (suhu benda konstan ).

Pengertian Kalor

Kalor didefinisikan sebagai energi panas yang dimiliki oleh suatu zat. Secara umum untuk mendeteksi adanya kalor yang dimiliki oleh suatu benda yaitu dengan mengukur suhu benda tersebut. Jika suhunya tinggi maka kalor yang dikandung oleh benda sangat besar, begitu juga sebaliknya jika suhunya rendah maka kalor yang dikandung sedikit.
Dari hasil percobaan yang sering dilakukan besar kecilnya kalor yang dibutuhkan suatu benda(zat) bergantung pada 3 faktor
1. massa zat
2. jenis zat (kalor jenis)
3. perubahan suhu
Sehingga secara matematis dapat dirumuskan :
Q = m.c.(t2 – t1)
Dimana :
Q adalah kalor yang dibutuhkan (J)
m adalah massa benda (kg)
c adalah kalor jenis (J/kgC)
(t2-t1) adalah perubahan suhu (C)
Kalor dapat dibagi menjadi 2 jenis
Kalor yang digunakan untuk menaikkan suhu
Kalor yang digunakan untuk mengubah wujud (kalor laten), persamaan yang digunakan dalam kalor laten ada dua macam Q = m.U dan Q = m.L. Dengan U adalah kalor uap (J/kg) dan L adalah kalor lebur (J/kg)
Dalam pembahasan kalor ada dua kosep yang hampir sama tetapi berbeda yaitu kapasitas kalor (H) dan kalor jenis (c)
Kapasitas kalor adalah banyaknya kalor yang diperlukan untuk menaikkan suhu benda sebesar 1 derajat celcius.
H = Q/(t2-t1)
Kalor jenis adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu 1 kg zat sebesar 1 derajat celcius. Alat yang digunakan untuk menentukan besar kalor jenis adalah kalorimeter.
c = Q/m.(t2-t1)
Bila kedua persamaan tersebut dihubungkan maka terbentuk persamaan baru
H = m.c
Analisis grafik perubahan wujud pada es yang dipanaskan sampai menjadi uap. Dalam grafik ini dapat dilihat semua persamaan kalor digunakan.

Keterangan :
Pada Q1 es mendapat kalor dan digunakan menaikkan suhu es, setelah suhu sampai pada 0 C kalor yang diterima digunakan untuk melebur (Q2), setelah semua menjadi air barulah terjadi kenaikan suhu air (Q3), setelah suhunya mencapai suhu 100 C maka kalor yang diterima digunakan untuk berubah wujud menjadi uap (Q4), kemudian setelah berubah menjadi uap semua maka akan kembali terjadi kenaikan suhu kembali (Q5)
Untuk mencoba kemampuan silakan kkerjakan latihan soal dengan cara klik disini.
Hubungan antara kalor dengan energi listrik
Kalor merupakan bentuk energi maka dapat berubah dari satu bentuk kebentuk yang lain. Berdasarkan Hukum Kekekalan Energi maka energi listrik dapat berubah menjadi energi kalor dan juga sebaliknya energi kalor dapat berubah menjadi energi listrik. Dalam pembahasan ini hanya akan diulas tentang hubungan energi listrik dengan energi kalor. Alat yang digunakan mengubah energi listrik menjadi energi kalor adalah ketel listrik, pemanas listrik, dll.
Besarnya energi listrik yang diubah atau diserap sama dengan besar kalor yang dihasilkan. Sehingga secara matematis dapat dirumuskan.
W = Q
Untuk menghitung energi listrik digunakan persamaan sebagai berikut :

W = P.t
Keterangan :
W adalah energi listrik (J)
P adalah daya listrik (W)
t adalah waktu yang diperlukan (s)
Bila rumus kalor yang digunakan adalah Q = m.c.(t2 – t1) maka diperoleh persamaan ;
P.t = m.c.(t2 – t1)
Yang perlu diperhatikan adalah rumus Q disini dapat berubah-ubah sesuai dengan soal.
Asas Black
Menurut asas Black apabila ada dua benda yang suhunya berbeda kemudian disatukan atau dicampur maka akan terjadi aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran ini akan berhenti sampai terjadi keseimbangan termal (suhu kedua benda sama). Secara matematis dapat dirumuskan :
Q lepas = Q terima
Yang melepas kalor adalah benda yang suhunya tinggi dan yang menerima kalor adalah benda yang bersuhu rendah. Bila persamaan tersebut dijabarkan maka akan diperoleh :
Q lepas = Q terima
m1.c1.(t1 – ta) = m2.c2.(ta-t2)
Catatan yang harus selalu diingat jika menggunakan asasa Black adalah pada benda yang bersuhu tinggi digunakan (t1 – ta) dan untuk benda yang bersuhu rendah digunakan (ta-t2). Dan rumus kalor yang digunakan tidak selalu yang ada diatas bergantung pada soal yang dikerjakan.

Kalor

Sudah dijelaskan pada bab sebelumnya apabila dua buah benda yang berbeda temperaturnya saling berkontak termal, temperatur benda yang lebih panas berkurang sedangkan temperatur benda yang lebih dingin bertambah. Ada sesuatu yang berpindah dalam kasus ini, apa ?
Kalorik, suatu materi yang tak terlihat, yang mengalir dari benda yang bertemperatur tinggi ke benda yang bertemperatur rendah.

Benyamin Thomson/Count Rumford (1753-1814) dengan eksperimen-nya, dia mengebor logam, teramati bahwa mata bor menjadi panas dan didinginkan dengan air (sampai airnya mendidih), tentunya dari teori “kalorik”, kalorik tersebut lama kelamaan akan habis dan ternyata bila proses tersebut berlanjut terus kalorik tersebut tidak habis, jadi teori kalorik tidak tepat. Jadi kalor bukan materi.


kalor
T1 T2 T1>T2

1. KALOR dan ENERGI TERMAL
Ada suatu perbedaan antara kalor (heat) dan energi dalam dari suatu bahan. Kalor hanya digunakan bila menjelaskan perpindahan energi dari satu tempat ke yang lain.
Kalor adalah energi yang dipindahkan akibat adanya perbedaan temperatur.. Sedangkan energi dalam (termis) adalah energi karena temperaturnya.


1.1. Satuan Kalor.
Satuan kalor adalah kalori dimana, 1 kalori adalah kalor yang diperlukan untuk menaikkan temperatur 1 gr air dari 14,5 C menjadi 15,5 C.
Dalam sistem British, 1 Btu (British Thermal Unit) adalah kalor untuk menaikkan temperatur 1 lb air dari 63 F menjadi 64 F.
1 kal = 4,186 J = 3,968 x 10-3 Btu
1 J = 0,2389 kal = 9,478 x 10-4 Btu
1 Btu = 1055 J = 252,0 kal

1.2. Kesetaraan Mekanik dari Kalor.
Dai konsep energi mekanik diperoleh bahwa bila gesekan terjadi pada sistem mekanis, ada energi mekanis yang hilang. Dan dari eksperimen diperoleh bahwa energi yang hilang tersebut berubah menjadi energi termal.
Dari eksperimen yang dilakukan oleh Joule (aktif penelitian pada tahun 1837-1847) diperoleh kesetaraan mekanis dari kalor :
1 kal = 4,186 joule

3. KAPASITAS KALOR dan KALOR JENIS
Kapasitas kalor (C) : jumlah kalor yang diperlukan untuk menaikkan temperatur dari suatu sampel bahan sebesar 1 Co.
Q = C T
Kapasitas panas dari beberapa benda sebanding dengan massanya, maka lebih mudah bila didefinisikan kalor jenis, c :
Kalor jenis, c : jumlah kalor yang diperlukan untuk menaikkan temperatur dari 1 gr massa bahan sebesar 1 Co.
Q = m c T

T2
Bila harga c tidak konstan : Q =  m c dT
T1

Catatan : untuk gas kalor jenis biasanya dinyatakan untuk satu mol bahan, dsb kalor jenis molar,
Q = n c T

Kalor jenis beberapa bahan pada 25 C.
Bahan
c (kal/gr. Co)
Bahan
c (kal/gr. Co)
Aluminium
0,215
Kuningan
0,092
Tembaga
0,0924
Kayu
0,41
Emas
0,0308
Glas
0,200
Besi
0,107
Es (-5 C)
0,50
Timbal
0,0305
Alkohol
0,58
Perak
0,056
Air Raksa
0,033
Silikon
0,056
Air (15 C)
1,00

3. KALOR LATEN
Suatu bahan biasanya mengalami perubahan temperatur bila terjadi perpindahan kalor antara bahan dengan lingkungannya. Pada suatu situasi tertentu, aliran kalor ini tidak merubah temperaturnya. Hal ini terjadi bila bahan mengalami perubahan fasa. Misalnya padat menjadi cair (mencair), cair menjadi uap (mendidih) dan perubahan struktur kristal (zat padat). Energi yang diperlukan disebut kalor transformasi.
Kalor yang diperlukan untuk merubah fasa dari bahan bermassa m adalah
Q = m L
dimana L adalah kalor laten.

4. PERPINDAHAN KALOR
Bila dua benda atau lebih terjadi kontak termal maka akan terjadi aliran kalor dari benda yang bertemperatur lebih tinggi ke benda yang bertemperatur lebih rendah, hingga tercapainya kesetimbangan termal.
Proses perpindahan panas ini berlangsung dalam 3 mekanisme, yaitu : konduksi, konveksi dan radiasi.

4.1. Konduksi
Proses perpindahan kalor secara konduksi bila dilihat secara atomik merupakan pertukaran energi kinetik antar molekul (atom), dimana partikel yang energinya rendah dapat meningkat dengan menumbuk partikel dengan energi yang lebih tinggi.



Sebelum dipanaskan atom dan elektron dari logam bergetar pada posisi setimbang. Pada ujung logam mulai dipanaskan, pada bagian ini atom dan elektron bergetar dengan amplitudi yang makin membesar. Selanjutnya bertumbukan dengan atom dan elektron disekitarnya dan memindahkan sebagian energinya. Kejadian ini berlanjut hingga pada atom dan elektron di ujung logam yang satunya. Konduksi terjadi melalui getaran dan gerakan elektron bebas.



T2 T1 T1

Aliran kalor
A
x

Bila T2 dan T1 dipertahankan terus besarnya, maka kesetimbangan termal tidak akan pernah tercapai, dan dalam keadaan mantap/tunak (stedy state), kalor yang mengalir persatuan waktu sebanding dengan luas penampang A, sebanding dengan perbedaan temperatur T dan berbanding terbalik dengan lebar bidang x
Q/t = H  A T/x




Untuk penampang berupa bidang datar :



T1 T2
L

H = - k A (T1 - T2 ) / L
k adalah kondutivitas termal.
Konduktivitas termal untuk beberapa bahan :
Bahan
k (W/m.Co)
Bahan
k (W/m.Co)
Aluminium
238
Asbestos
0,08
Tembaga
397
Concrete
0,8
Emas
314
Gelas
0,8
Besi
79,5
Karet
0,2
Timbal
34,7
air
0,6
Perak
427
kayu
0,08


udara
0,0234

Untuk susunan beberapa bahan dengan ketebalan L1, L2,, ... dan konduktivitas masing-masing k1, k2,, ... adalah :
H = A (T1 - T2 )
 (L1/k1)





k1 k2
T1 L1 L2 T2



Bagaimana dengan bidang yang berbentuk silinder ?

4.2. Konveksi
Apabila kalor berpindah dengan cara gerakan partikel yang telah dipanaskan dikatakan perpindahan kalor secara konveksi. Bila perpindahannya dikarenakan perbedaan kerapatan disebut konveksi alami (natural convection) dan bila didorong, misal dengan fan atau pompa disebut konveksi paksa (forced convection).
Besarnya konveksi tergantung pada :
a. Luas permukaan benda yang bersinggungan dengan fluida (A).
b. Perbedaan suhu antara permukaan benda dengan fluida (T).
c. koefisien konveksi (h), yang tergantung pada :
# viscositas fluida
# kecepatan fluida
# perbedaan temperatur antara permukaan dan fluida
# kapasitas panas fluida
# rapat massa fluida
# bentuk permukaan kontak

Konveksi : H = h x A x T

4.3. Radiasi
Pada proses radiasi, energi termis diubah menjadi energi radiasi. Energi ini termuat dalam gelombang elektromagnetik, khususnya daerah inframerah (700 nm - 100 m). Saat gelombang elektromagnetik tersebut berinteraksi dengan materi energi radiasi berubah menjadi energi termal.
Untuk benda hitam, radiasi termal yang dipancarkan per satuan waktu per satuan luas pada temperatur T kelvin adalah :

E = e T4.
dimana  : konstanta Boltzmann : 5,67 x 10-8 W/ m2 K4.
e : emitansi (0  e  1)

Pencemaran Udara

Pencemaran Udara
Published On Friday, December 07, 2007

Pencemaran udara adalah kehadiran satu atau lebih substansi fisik, kimia, atau biologi di atmosfer dalam jumlah yang dapat membahayakan kesehatan manusia, hewan, dan tumbuhan, mengganggu estetika dan kenyamanan, atau merusak properti.

Pencemaran udara dapat ditimbulkan oleh sumber-sumber alami maupun kegiatan manusia. Beberapa definisi gangguan fisik seperti polusi suara, panas, radiasi atau polusi cahaya dianggap sebagai polusi udara. Sifat alami udara mengakibatkan dampak pencemaran udara dapat bersifat langsung dan lokal, regional, maupun global.Pencemar udara dibedakan menjadi pencemar primer dan pencemar sekunder. Pencemar primer adalah substansi pencemar yang ditimbulkan langsung dari sumber pencemaran udara. Karbon monoksida adalah sebuah contoh dari pencemar udara primer karena ia merupakan hasil dari pembakaran. Pencemar sekunder adalah substansi pencemar yang terbentuk dari reaksi pencemar-pencemar primer di atmosfer. Pembentukan ozon dalam smog fotokimia adalah sebuah contoh dari pencemaran udara sekunder.

Atmosfer merupakan sebuah sistem yang kompleks, dinamik, dan rapuh. Belakangan ini pertumbuhan keprihatinan akan efek dari emisi polusi udara dalam konteks global dan hubungannya dengan pemanasan global, perubahan iklim dan deplesi ozon di stratosfer semakin meningkat.

Kegiatan manusia

Transportasi
Industri
Pembangkit listrik
Pembakaran (perapian, kompor, furnace, insinerator dengan berbagai jenis bahan bakar)

Sumber alami

Gunung berapi
Rawa-rawa
Kebakaran hutan
Nitrifikasi dan denitrifikasi biologi

Sumber-sumber lain

Transportasi amonia
Kebocoran tangki klor
Timbulan gas metana dari lahan uruk/tempat pembuangan akhir sampah
Uap pelarut organik

Jenis-jenis pencemar

Karbon monoksida
Oksida nitrogen
Oksida sulfur
CFC
Hidrokarbon
Ozon
Volatile Organic Compounds
Partikulat

Dampak
Dampak kesehatan
Substansi pencemar yang terdapat di udara dapat masuk ke dalam tubuh melalui sistem pernapasan. Jauhnya penetrasi zat pencemar ke dalam tubuh bergantung kepada jenis pencemar. Partikulat berukuran besar dapat tertahan di saluran pernapasan bagian atas, sedangkan partikulat berukuran kecil dan gas dapat mencapai paru-paru. Dari paru-paru, zat pencemar diserap oleh sistem peredaran darah dan menyebar ke seluruh tubuh.

Dampak kesehatan yang paling umum dijumpai adalah ISPA (infeksi saluran pernapasan akut), termasuk di antaranya, asma, bronkitis, dan gangguan pernapasan lainnya. Beberapa zat pencemar dikategorikan sebagai toksik dan karsinogenik.
Studi ADB memperkirakan dampak pencemaran udara di Jakarta yang berkaitan dengan kematian prematur, perawatan rumah sakit, berkurangnya hari kerja efektif, dan ISPA pada tahun 1998 senilai dengan 1,8 trilyun rupiah dan akan meningkat menjadi 4,3 trilyun rupiah di tahun 2015.

Dampak terhadap tanaman
Tanaman yang tumbuh di daerah dengan tingkat pencemaran udara tinggi dapat terganggu pertumbuhannya dan rawan penyakit, antara lain klorosis, nekrosis, dan bintik hitam. Partikulat yang terdeposisi di permukaan tanaman dapat menghambat proses fotosintesis.
Hujan asam
pH normal air hujan adalah 5,6 karena adanya CO2 di atmosfer. Pencemar udara seperti SO2 dan NO2 bereaksi dengan air hujan membentuk asam dan menurunkan pH air hujan. Dampak dari hujan asam ini antara lain:

Mempengaruhi kualitas air permukaan
Merusak tanaman
Melarutkan logam-logam berat yang terdapat dalam tanah sehingga mempengaruhi kualitas air tanah dan air permukaan
Bersifat korosif sehingga merusak material dan bangunan

Efek rumah kaca
Efek rumah kaca disebabkan oleh keberadaan CO2, CFC, metana, ozon, dan N2O di lapisan troposfer yang menyerap radiasi panas matahari yang dipantulkan oleh permukaan bumi. Akibatnya panas terperangkap dalam lapisan troposfer dan menimbulkan fenomena pemanasan global.
Dampak dari pemanasan global adalah:

Pencairan es di kutub
Perubahan iklim regional dan global

Kerusakan lapisan ozon
Lapisan ozon yang berada di stratosfer (ketinggian 20-35 km) merupakan pelindung alami bumi yang berfungsi memfilter radiasi ultraviolet B dari matahari. Pembentukan dan penguraian molekul-molekul ozon (O3) terjadi secara alami di stratosfer. Emisi CFC yang mencapai stratosfer dan bersifat sangat stabil menyebabkan laju penguraian molekul-molekul ozon lebih cepat dari pembentukannya, sehingga terbentuk lubang-lubang pada lapisan ozon.
Kerusakan lapisan ozon menyebabkan sinar UV-B matahri tidak terfilter dan dapat mengakibatkan kanker kulit serta penyakit pada tanaman.
cemaran udara dapat bersifat langsung dan lokal, regional, maupun global.
Sumber:wikipedia.

Udara

Udara merujuk kepada campuran gas yang terdapat pada permukaan bumi. Udara bumi yang kering mengandungi 78% nitrogen, 21% oksigen, dan 1% uap air, karbon dioksida, dan gas-gas lain.

Kandungan elemen senyawa gas dan partikel dalam udara akan berubah-ubah dengan ketinggian dari permukaan tanah. Demikian juga massanya, akan berkurang seiring dengan ketinggian. Semakin dekat dengan lapisan troposfer, maka udara semakin tipis, sehingga melewati batas gravitasi bumi, maka udara akan hampa sama sekali.

Apabila makhluk hidup bernapas, kandungan oksigen berkurang, sementara kandungan karbon dioksida bertambah. Ketika tumbuhan menjalani sistem fotosintesa, oksigen kembali dibebaskan.

Di antara gas-gas yang membentuk udara adalah seperti berikut :

Helium
Nitrogen
Oksigen
Karbon dioksida

Sumber Polusi Udara
Pencemar udara dibedakan menjadi dua yaitu, pencemar primer dan pencemar sekunder. Pencemar primer adalah substansi pencemar yang ditimbulkan langsung dari sumber pencemaran udara. [Karbon monoksida]adalah sebuah contoh dari pencemar udara primer karena ia merupakan hasil dari pembakaran. Pencemar sekunder adalah substansi pencemar yang terbentuk dari reaksi pencemar-pencemar primer di atmosfer. Pembentukan ozon dalam [smog fotokimia] adalah sebuah contoh dari pencemaran udara sekunder.
Belakangan ini tumbuh keprihatinan akan efek dari emisi polusi udara dalam konteks global dan hubungannya dengan pemanasan global (global warming) yg memengaruhi;
Kegiatan manusia
Transportasi
Industri
Pembangkit listrik
Pembakaran (perapian, kompor, furnace,[insinerator]dengan berbagai jenis bahan bakar
Gas buang pabrik yang menghasilkan gas berbahaya seperti (CFC)
Sumber alami
Gunung berapi
Rawa-rawa
Kebakaran hutan
Nitrifikasi dan denitrifikasi biologi
Sumber-sumber lain
Transportasi amonia
Kebocoran tangki klor
Timbulan gas metana dari lahan uruk /tempat pembuangan akhir sampah
Uap pelarut organik
Jenis-jenis pencemar
Karbon monoksida
Oksida nitrogen
Oksida sulfur
CFC
Hidrokarbon
Ozon
Volatile Organic Compounds
Partikulat
Dampak
Dampak kesehatan
Substansi pencemar yang terdapat di udara dapat masuk ke dalam tubuh melalui sistem pernapasan. Jauhnya penetrasi zat pencemar ke dalam tubuh bergantung kepada jenis pencemar. Partikulat berukuran besar dapat tertahan di saluran pernapasan bagian atas, sedangkan partikulat berukuran kecil dan gas dapat mencapai paru-paru. Dari paru-paru, zat pencemar diserap oleh sistem peredaran darah dan menyebar ke seluruh tubuh.
Dampak kesehatan yang paling umum dijumpai adalah ISNA (infeksi saluran napas atas), termasuk di antaranya, asma, bronkitis, dan gangguan pernapasan lainnya. Beberapa zat pencemar dikategorikan sebagai toksik dan karsinogenik.
memperkirakan dampak pencemaran udara di Jakarta yang berkaitan dengan kematian prematur, perawatan rumah sakit, berkurangnya hari kerja efektif, dan ISNA pada tahun 1998 senilai dengan 1,8 trilyun rupiah dan akan meningkat menjadi 4,3 trilyun rupiah di tahun 2015.
Dampak terhadap tanaman
Tanaman yang tumbuh di daerah dengan tingkat pencemaran udara tinggi dapat terganggu pertumbuhannya dan rawan penyakit, antara lain klorosis, nekrosis, dan bintik hitam. Partikulat yang terdeposisi di permukaan tanaman dapat menghambat proses fotosintesis.
Hujan asam
pH biasa air hujan adalah 5,6 karena adanya CO2 di atmosfer. Pencemar udara seperti SO2 dan NO2 bereaksi dengan air hujan membentuk asam dan menurunkan pH air hujan. Dampak dari hujan asam ini antara lain:
Mempengaruhi kualitas air permukaan
Merusak tanaman
Melarutkan logam-logam berat yang terdapat dalam tanah sehingga memengaruhi kualitas air tanah dan air permukaan
Bersifat korosif sehingga merusak material dan bangunan
Efek rumah kaca
Efek rumah kaca disebabkan oleh keberadaan CO2, CFC, metana, ozon, dan N2O di lapisan troposfer yang menyerap radiasi panas matahari yang dipantulkan oleh permukaan bumi. Akibatnya panas terperangkap dalam lapisan troposfer dan menimbulkan fenomena pemanasan global.
Dampak dari pemanasan global adalah:
Pencairan es di kutub
Perubahan iklim regional dan global
Perubahan siklus hidup flora dan fauna
Kerusakan lapisan ozon
Lapisan ozon yang berada di stratosfer (ketinggian 20-35 km) merupakan pelindung alami bumi yang berfungsi memfilter radiasi ultraviolet B dari matahari. Pembentukan dan penguraian molekul-molekul ozon (O3) terjadi secara alami di stratosfer. Emisi CFC yang mencapai stratosfer dan bersifat sangat stabil menyebabkan laju penguraian molekul-molekul ozon lebih cepat dari pembentukannya, sehingga terbentuk lubang-lubang pada lapisan ozon.

Ketrampilan BK

Dapatkah anda membayangkan pada bagian ini diperlukan adanya kemampuan untuk mendifinisikan sifat-sifat inti dari tahap kedua, sifat intuisinya dan gaya yang lebih menantang.
Tugas utama dalam tahap kedua adalah mengubah pandangan bagi klein. Ia harus mendifinisikan masalah dengan cara yang segar. Cara yang diungkapkannya masalah sampai saat ini tidak menghasilkan kesimpulan yang memuaskan. Perlu diungkapkan lagi dalam cara lain.
Sebagai ilustrasi dimana pimpinan sekolah dan staf pengajar menghadapi suatu situasi seperti yang kita gambarkan dibawah ini :
„Staf pengajar disibukkan dengan kegiatan yang terkait dengan kegiatan berkaitan dengan kesiapan untuk meningkatkan jenjang karir dalam rangka persiapan untuk meningkatkan taraf kehidupan di masa depan, dengan kesibukan mereka hanya meluangkan waktu untuk mengajar saja sedangkan kegiatan dalam partisipasi dalam bimbingan konseling tidak ada waktu sama sekali.
Sebaliknya pimpinan sekolah disibukkan dengan kegiatan organisasi yayasan amal di luar lingkungan sekolah, yang berarti kemampuan untuk mengkoordinasikan kegiatan bimbingan konseling tidak ada waktu sama sekali. Walaupun diantara staf pengajar ada yang tidak terlibat langsung dalam peningkatan karir, tapi melihat teman sejawat tidak ada waktu, maka lingkungan menjadi tidak kondusif dalam lingkungan organisasi intern komunitas pendidikan.
Diantara staf pengajar mengambil inisiatip untuk melakukan sumbang saran dalam merumuskan masalah sebenarnya apa yang terjadi. Dari hasil sumbang saran, maka bertolak dari identifikasi situasi bahwa 1) bimbingan konseling tidak berjalan sesuai dengan keputusan yang dibuat ; 2) semua pihak lebih mementingkan kepentingan pribadi ; 3) semua pihak tidak merasakan manfaat langsung atas kegiatan bimbingan konseling ; 4) tidak ada atasan dari komunitas pendidikan untuk mengawasi secara jelas pentingnya peran bimbingan konseling.
Bertolak dari identifikasi situasi tersebut, maka sampailah mereka pada rumusan masalah sebagai berikut „diperlukan kesadaran bersama, apakah peran bimbingan  konseling dipertahankan atau dibubarkan dalam struktur organisasi formal“  Dengan rumusan itu terbukalah pilihan-pilihan dalam usaha pemecahan masalah „
Bertolak dari pemikiran diatas, maka pada Tahap II mengubah gambaran / pandangan dalam cara yang menonjol. Beberapa unsur baru membrikan jalan untuk diteruskan. Jika tahap I memperjelas menjernihkan perasaan ; maka tahap kedua menjernihkan pikiran. Pada akhir tahap kedua ini, tujuannya dapat ditentukan dan membiarkan tahap akhir untuk jalan keluar.
Tidak seperti tahap I, di tahap kedua sumbangan konselor merupakan kritik. Hal ini bisa berupa penambahan, pengenyampingan pengubahan, bahkan dapat pula berselisih paham mengenai versi cerita klein. Juga terdapat unsur tantangan pada semua teknik tahap II, dan itulah sebabnya mengapa teknik ini sangat baik ditopang dengan kesadaran intuitif dan sensitif dari apa yang dipikirkan dan dirasakan klein kemampuan inilah yang saya sebut mendengar aktif level dua.
Sementara kita bergerak untuk mengadakan pertimbangan yang lebih rinci, perlu diingat bahwa „teknik“ tidak berarti kita harus „teknis“. Konseling adalah kegiatan yang sangat pribadi, didasarkan pada kwalitas  yang sangat pribadi, didasarkan pada kwalitas pribadi seperti kemurnian dan sikap mengormati. Teknik memang berguna karena dapat ditelaah tentang apa yang telah dilakukan oleh konselor yang baik.
Teknik juga membantu pelajar untuk membandingkan denan teknik yang digunakan oleh konselor yang tidak baik. Seperti logika yang tidak dibantah, nasehat yang tidak boleh disalahkan.
Sangatlah mudah untuk melihat kesalahan orang lain, bahwa mereka tidak baik pikirannya, bahwa mereka sedang kacau secara emosional. Godaan yang muncul adalah untuk segera terjun dan meluruskannya. Tapi penekanan dalam konseling adalah selalu membiarkan klein memperoleh pemecahan masalahnya sendiri dan menantang mereka dengan simpatik dan teliti.
1. KEKUATAN DALAM BERDIALOG UNTUK MENDENGARKAN TAHAP KEDUA
Seandainya mendengar aktif merupakan keahlian utama dalam tahap I atau mendengar aktif tahap kedua adalah kelanjutan logis dari tahap I, dan merupakan inti dari tahap II, termasuk didalamnya kemampuan untuk memahami dan mengkomunikasikan  pemahaman itu. Tapi dalam beberapa hal terdapat perbedaan  yang radikal. Bila pada empati tahap pertama masih tetap ada pada klein dan merupakan proses memancing cerita klein, maka pada tahap II sudah mulai dengan cara yang mengigit, menantang dan bahkan dapat mengguncang. Jika tanggapan pemahaman yang tidak menentu pada tahap sebelumnya hingga diperlukan sebagai rangsangan, maka pada tahap II pemahamannya merupakan penyelidikan. Pada tahap I klein perlu merasa aman dan mempercayai bayangan diri orang yang dapat memahami dirinya.
Tapi sekarang pada tahap II, klein diberikan kejelasan dan dihadapkan langung tentang apa yang dihadapinya, untuk itu konselor mengembangkan kemampuan mendengar ke tahap yang lebih mendalam dan memisahkan cara-cara mereka menghubungkannya dengan pemahaman sensitif melalui apa yang disebut denan :
Lukisan Gambar :
Salah satu caranya adalah dengan mengunakan kiasan-kiasan atau perumpamaan. Konselor yang terbaik biasanya banyak ilhamnya. Mereka bahkan tidak mengetahui kapan ilhamnya muncul. Tapi sebenarnya ilham itu bermula dari gambaran tercipta dalam benak mereka.
Jadi pekerjaan utama pada ertngahan tahap konseling ialah seperti yang telah diterangkan sebelumnya, „mengubah gambaran“ dan kemampuan untuk melukiskan gambaran tersebut kepada klein adalah keahlian yang palng berharga yang harus ditunjukkan konselor pada saat ini.
Selain pemahaman sinsitif yang disebut diatas, dapat juga dalam bentuk yang disebut dengan : Membuat yang implisit menjadi eksplsit ; atau Pengambilan resiko untuk meluruskannya ; atau menggabungkan kenyataan-kenyataan ; atau Memilih tema ; Akhirnya engambil kesimpulan.
Sejalan dengan pemikiran diatas, maka semua keahlian pada tahap II berkisar diantara dua keahlian dasar yang disebut mndengar aktif taha kedua dan suatu tantangan untuk membuat komentar tahap satu adalah tentang ketepatan, pemahaman, dan menerima. Tahap II sudah mulai ditelusuri. Sebagaimana penuluran lainnya, semakin sensitif dan semakin ekonomis semakin baik untuk digunakan. Saya telah meneliti teknik-teknik ini sebelum melakukannya.
3. KEBUTUHAN KEAHLIAN LAINNYA DALAM TAHAP KEDUA
Mendengar aktif Tahap II adalah unsure pusat dari konseling tahap II. Jawaban atau tanggapan konselor, selain bersifat empati, pada tahap ini mengadakan enerobosan. Hal-hal yang biasa dilakukan oleh konselor yang baik dalam tahap ini, seperti mengajukan tantangan, atau merangsang atau mengjutkan klein untuk memikirkan kembali, dengan mengungkap hal yang terkait melalui apa yang disebut denan :
Membuat ringkasan :
Cara dibentuknya ringkasan menandakan jasa nyata pertama dari konselor, karena dapat dibentuk dalam suatu cara yang mencari titik terang terhadap aspek tertentu dari orang lain dan mmulai proses khas tahap II yang menyatakan, “saya memahami cara anda melihat permasalahan, tapi mungkin masih ada hal lainnya”. Dengan demikian klein ditantang, tidak hanya cukup memahami. Jangan tercebak dalam usaha untuk memberikan nasehat.
Memberikan informasi :
Memberikan informasi adalah salah satu keahlian dalam tahap konseling menengah. Seorang pimpinan berpengalaman yang saya kenal berkata bagaimana ia merasa heran bahwa sering yang menjadi sumber masalah bagi kleinnya adalah kurang informasi. Tapi kadang-kadang tidaklah jelas bahwa kekurangan informasi itu merupakan akar dari suatu masalah. Indikasi yang baik yang menunjukkan kasus semacam itu adalah bila masalahnya tidak masuk akal. Bila konselor tidak melihat bagaimana sesuatu itu menjadi masalah. Biasanya terjadi bila klein tdak menyadari mengenai,fakta yang diambil konselor begitu saja dan membayangkannya bahwa setiap orang pasti tahu. Seorang konselor sebaiknya tidak pernah merasa takut untuk tampil sebagai orang yang tidak tahu, dan mengajukan pertanyaan :”Maaf, saya tidak mengerti. Bagaimana hal ini menjadi masalah bagi anda ?
Melakukan konfrontasi :
Memberikan tantangan atau konfrontasi merupakan makanan empuk bagi calon konselor, tapi pada kenyataannya hal ini merupakan satu-satunya teknik dan yang paling efektif bila menunjukkan kekurangan dari apa yang disampaikan orang, bila hal ini didukumentasikan dngan fakta dan tingkah laku teknik harus dilakukan da ini diprhalus dengan belas kasihan. Perlu ditegaskan bahwa konfrontasi adalah yang terbaik dari apa yang disebut “suatu posisi perawatan”. Memang akan terasa sulit tanpa menimbulkan rasa sakit.
Seorang klein pernah berkata tentang pengalamannya dengan seorang konselor: “saya menceritakan kepadanya bagaimana semua orang brpendapat bahwa saya ini seorang yang aneh da tahukah anda apa apa yang dikatakannya?” Ia berkata “ kau memang aneh !” Tentu saja komentarnya disampaikan sedemikian rupa agar tidak terasa sebagai celaan. Dalam cara yang cuku ganjil hal itu dapat merupakan suatu yang menyenangkan. Mungkin orang itu”aneh” tapi tidak berarti ia tidak akan diterima oleh konselor. Pernyataan dan konfrontasi semacam itu dapat diungkapkan dengan tertawa.
Membicarakan pengalaman seseorang :
Mungkin ini adalah yang paling penting dan mudah bagi pemula, tapi memang berguna. „Anda tahu, sebenarnya tidak akan ada insentive dalam organisasi pendidikan untuk waktu yang tidak jelas dan saya sering merasa sedikit kecewa bahwa saya terlambat untuk memenuhi persyaratan.“
Ungkapan ini hanyalah dapat berlaku kalau keterbukaan benar-benar pribadi, bila cocok dengan tingkat keterbukaan yang disampaikan sendiri. Akibatnya akan membuat klein terkejut dalam pemikiran „saya ini bukanlah satu-satunya yang mengalami. Oran lainpun pernah menderita dalam hal yang sama“. Tapi tidak berlaku bila keterbukaan itu hanyalah pura-pura yang berakibat mengurangi kepercayaan orang: „ Anak muda pada saat saya seusia kamu, kita tidak tahu sama sekali makna dari bagian insentif“
Bagaimana pula kata-kata pimpinan berpengalaman „Menurut pendapat saya, membicarakan diri sendiri merupakan kesalahan umum dai orang-orang yang belum terlatih atau yang tidak perna berpikr. Kamu perlu memberikan lebih banyak tekanan terhadap bahaya dalam melakkan hal ini.“
Bisikan hati :
Untuk segala peistiwa pada saat konselor membicarakan tentang hubungan yang berkembang antara konselor dan klein.
„Nampaknya kita kembali kearah semula. Saya rasa kita selalu berputar-putar. Setiap saat saya mengungkapkan masalah ke cara anda menghubungkan dengan bagian lain, anda selalu menguap seakan-akan saya telah keluar jalur. Saya pikir anda harus menolak untuk membicarakannya bahwa anda selalu mengatakan kepada saya untuk mengenyampngkannya, tapi anda sendiri tidak mau mengatakan, Benar ?”
Penelurusan / pengorekan lebih dalam :
Kamu terus menerus mengatakan bahwa kamu tidak berguna. Coba berikan contoh-contohnya“ Apa yang anda maksudkan dengan terus keatas, apa artinya ?“
Seorang konselor perlu mendorong klein untuk lebih spesifik. Kadang-kadang klein sengaja menghindar dengan menyatakan hal yang umum atau samar-samar, dan mereka harus didorong untuk menjelaskan maksudnya. Atau konselor tidak akan dapat mengetahui dasar masalah yang akan mengakibatkan tidak pernah mampu mengubahnya.
Memberikan semangat :
„Kamu telah mengatakan mengenai perolehan pengalaman yang dibutuhkan dalam waktu tiga tahun. Tapi cara anda mempersoalkan hal itu dan enerji yang telah anda gunakan untuk pengalaman tersebut, anda merasa mampu untuk menyelesaikannya dalam dua tahun saja“
Inilah cara mengubah gambaran dengan memberikan semangat, bukan hanya dorongan demi untuk pengalamannya. Hanya untuk mengatakan : „Ayolah, kamu selalu meninjaunya dari sudut yang gelap“, dapat memberikan dorongan, tapi adakalanya seperti menyuruh orang tidak merasa demikian.
Kedua kategori ini (penelurusan dan pemberian semangat atau bantuan) adalah dua keahlian yang tidak termasuk ke tahap I. Tapi diletakkan disini di tahap II. Pemberian semangat dan bantuan juga dapat terlihat tahap III.
RINGKASAN
Dalam paragrap ini telah dibicarakan beberapa teknik spesifik untuk menggerakka Klein dari permasalahan, yang kalau ditinjau dari akhir Tahap I dan bila telah mengerti, masih nampak belum terpecahkan. Semua teknik mengandung unsur tantangan dan semuana ditunjang dengan rasa pemahaman dan komunikasi dar mendengar tahap ke II.
Terdapat beberapa variasi dalam pendekatan ini tapi yang paling utama dari keseluruhan teknik tahap II ialah adanya keinginan untuk mengajak Klein agar berpikir beda mengenai masalahnya dan untuk melihat dalam pola kerja yang baru untuk mencocokkan  segala masalah sedemikian rupa sehingga akhirnya terlihat tujuan atau tindak lanjut yang harus diambil.
Tindakan akan diambil pada tahap III, melibatkan cra memberikan nasehat yang sementara waktu saya keluarkan dari Tahap II. Saya telah memberikan berbagai alasan mengapa Konselor jangan cepat ingin memberi nasehat. Yang selanjutnya akan dibahas secara terpisah.
4. PERINGATAN-PERINGATAN
Karena enting, dua aspek dari proses konseling secara singkat akan diambil intisarinya dalam paragrap ini untuk memperkuat, hal-hal yang terkait dengan peringatan yang disebut dengan :
Jangan terlalu teknis :
Selalu muncul bahaya uatuk kegagalan seperti dari daftar teknik yaitu nampak sesuatu yang sederhana akan terlihat sebagai sesuatu yang terlalu teknis. Ketika seorang kritik seni memerik lukisan si A, maka yang dilihat hanyalah masalah seninya, tanpa meninjau masalah kesenangan. Dan tidak diragukan lagi bahwa konseling itu adalah seni serta kepuasan.
Karena itu selalu ingat bahwa apa yang membuat bantuan konseing menjadi efektif adalah diri konselor itu sendiri bukan metodenya. Jika seseorang yang membantu tlah tahu  menaruh rasa hormat pada pendapat orang lain, dapat menyampaikan dengan sederhana dan jujur tanpa menonjolkan sikap serta memiliki kemampuan untuk merendah, maka sudah cukuplah. Untuk menonjolkan diri sendiri dapat membawa kearah kebodohan „teknis“. Tapi akan lebih pentng dalam konseling untuk menonolkan diri dari pada tidak tercela.  Yang perlu diperhitungkan adalah kepekaan dan kerendahan hati untuk mengetahui kesalahan dan menguranginya. Hal ini akan dianggap lebih jauh dari epura-puraan yang diinduksikan karena terlalu merenungkan kesalahan serta teknik.
Seandainya masih ada kwalitas yang diperlukan untuk tahap II, kwalitas yang diperlukan adalah konselor untuk emberikan tantangan kepada klein pada saat yang tepat, jika pada tahap I intinya adalah mendengar, maka pada tahap II intinya adalah mengadakan konfrontasi.
Konfrontasi :
Didalam proses konseling, konfrontasi itu adalah prosedur ringan tidak seperti dalam pemakaian yang umum. Hal ini dapat berarti dari saling pandang, walaupun bukan hal pokok. Yang penting adalah membuat klein dapat bercerita. Bukan hanya meluruskan pikiran mereka, tapi mungkin juga mereka tidak jujur dengan diri mereka; mungkin mereka akan menolak untuk melihat sesuatu, memutuskan sesuatu, mengubahnya dan melakukan sesuatu.Dengan demikian masalahnya takkan pernah ditanggulangi samapai mereka sendiri mau menanggulanginya secara pribadi.
Mereka perlu diberi tantangan  untuk mau membuka sesuatu dan mengakui kesalahannya, mengeluarkan masalahnya; letupan mental; kebodohan yang disengaja, sikap keras. Pada tahap pertama, konselor membiarkan berlak tanpa komentar. Dalam tahap II, ia harus mngambil resiko untuk mengajukan tantangan. Jika kemauan untuk melakukan kesalahan merupakan bagian dari rekaan konselor maka resiko itu harus diambil dari kemauan tersebut.
Aturan-aturan konfrontasi :
1) Sipenolong perlu mempunyai hak untuk mengkonfrontasikan dengan orang lain. Ia perlu mengajukan pemikiran dan usahanya dalam suasana cukup aman agar konfrontasi dapat diterima atau disetujui.
2) Konfrontasi harus dilakukan secara hati-hati.
3) Konfrontasi harus dilakukan dengan secara tentatif.
4) Sipenolong harus jelas mennjukkan bahwa konfrontasi tidak akan mengakibatkan perasaan putus asa, tapi harus membuat perasaan lega.
5) Sebaliknya sipenolong harus mau menerima tantangan. Hubungan dalam konseling tidak boleh searah.
6) Biarkan klein mengajukan tantantan atau mengkonfrontasikan dirinya kalau memungkinkan.
7)
. TAHAP KETIGA
1. MENELITI SASARAN YANG HENDAK DICAPAI
Tahap ketiga proses konseling berkaitan dengan ua hal : dipihak Klein TINDAKAN dan dipihak Konselor membantu dan mencari smber tindakan tersebut. Ciri yang khusus dari tahap ini, dibandingkan dengan dua lainnya yang terdahulu, sudah jelas, artinya bagian tiga dan terakhir dari Keterampilan Konseling memberikan gambaran bagaimana suatu proses konseling harus disempurnakan dan bagimana dia terwujud ke dalam bentuk pertolongan.
2. MELENGKAPI PROSES
Pada bagian ini akan memperlihatkan adanya hubungan antara tahap ketiga konseling dengan dua sebelumnya dan juga memperlihatkan perbedaan gayanya.
Bagi mereka yang punya kegemaran untuk memerankan konselor pada prses taha akhir ini akan lebih mengenal bidang ini. Bila samapai saat ini mereka masih tetap sadar bahwa mereka akan menyadari , akhirnya mereka bisa melakukan sesuatu. Katakanlah sebagai hiburan, kesempatan yang baik bahwa sumbangan mereka akan lebih efektif, lebih ekonomis dalam hal usaha dan lebih sedikit adanya kecenderungan akan adanya kemunduran.
Bila kita perhatikan hal-hal tersebut yang seorang konselor dapat lakukan titik proses ini, segera akan kita dapatkan hampir selalu ada sejumlah kejadian yang klein ingin kita melakukanya karena mereka tiak mungkin melakukannya. Sikonselor masih harus membuat keputusan apa yang dapat dia lakukan dan apa yang tidak.
Sejalan dengan pikiran diatas, kita membayangkan dari pekerjaan yang dilakukan dalam tahap III seperi yang terkait dengan pelayanan sederhana, urutan pelatihan yang dibutuhkan, dan penyerahan dari suatu pekerjaan.
Jadi dengan membayangkan ekerjaan yang kita sebutkan itu, berarti kita memiliki kemampuan bahwa dalam Tahap III, merupakan bagian integral dari proses konseling. Pada tahap pemikiran terebut adakalanya dari satu tahap ke tahap beirkutnya terjadi kontradiksi, yang selanjutnya perlu diseimbangkan melalui kontribusi klein dan konselor seperti yang kita ungkakan dibawah ini :
1)      Konselor mungkin tidak membtuhkan tahap satu atau melalui tahap dua.
2)      Klein adakalanya mengerjakan sendiri tanpa membutuhkan bantuan konselor, sehingga sehingga konselor seharusnya tidak mengambl bagian dan keterlibatan.
3)      Kadang-kadang klein tidak membutuhkan bantuan konselor dalam tahap III, bahkan kebutuhan yang bersifat khusus sekalipun, sehingga konseor harus berperan sebaik mungkin dalam jabatannya dan tidak mengajukan jalan keluar yang lainya, inidisebut membantu lain dari pada konseling.
4)      Tahap III, karena tekanan pada tindakan, amat berbeda dengan dua tahap sebelumnya, tetap keseluruhan poses terbatas dalam kontribusi onselor terhadap apa yang tak dapat dikerjakan olehnya sendiri.
5)      Keseimbangan diantara ketiga tahap dan kontribusi diantara konselor dan klein membuat menjadi sulit, bila satu atau lain pekerjaan lebih baik dari satu ketahap lainnya. Seorang konselor perlu berhati-hati terhadap pusat perhatian pribadi dan pilihan-pilihan dalam perbedaan tahap.
3. KETERAMPILAN TAHAP  III
Terkait dalam pemikran konseling seperti yang terungkap dalam tulisan ini, memberikan semangat yang disebut sebagai “filosofi pusat klein”, yang kadang kala diartikan bukan sebagai petunjuk, pada hal tindakan alternative sebagai petunjuk. Menurut tindakan tersebut bahwasanya konselor tidak memecahkan masalah klein, tetapi ia diperbolehkan bercerita  dengan caranya sendiri, dan dia mendengarkan hal yang tidak berguna, secara perlahan dia didorong agar memikirkan kembali posisinya.
Apa yang dibutuhkan klein ?
Dalam suatu situasi apapun, dimana klein tidak selalu dikesampingkan, oleh karena itu dalam situasi demikian, maka kontribusi konselor pada tahap III, merupakan salah satu sumber dan pelayanan klein untuk mencapai sasaran tertentu.
Bertolak dari pemikiran diatas, maka sumber-sumber yang kurang bagi klein dalam proses ini adalah hal-hal yang terkait dengan apa yang disebut “enerji / kepastian ; pengetahuan / petunjuk. Sehubungan dengan itu, maka konselor disini harus lebih aktif dari pada tahap-tahap sebelumnya, lebih siap lagi mengukur inisiatifnya, jelas lebih mempengaruhi, merangsang dan membantu, secara terbuka mendorong tanggung awab. Dalam hal ini penyluh ingin menggunakan kekuasaannya yang dicapai melalui pekerjaan sensitive pada tahap-tahap sebelumnya. Makud disini kekuasaan bukan kekuatan. Kekatan sesekali timul dari suatu gambaran, sedangkan konseling keluar dari dalam.
Untuk menambah sumber-sumber enerji klein, kepastian dan tanggung jawab, dari petunjuk dan pengetahuan seorang konselor harus memiliki keterampilan yang luas, dalam hal ini yang paling sering harus dimiliki adalah yang terkait dengan 1) latihan, 2) memberikan umpan balik, 3) nasehat, 4) bantuan keahlian, 5) pengarahan, 6) menyumbangkan keahlian.
Dengan pemahaman dari seperangkat keterampilan yang kita sebutkan diatas, diharapkan peran konselor dalam tahap III, proses konseling tentang penambahan sumber-sumber klein untuk mencapai sasaran tertentu diharapkan menjadi produktif.
4. CONTOH TAHAP III
Seperti yang telah diutarakan pada bagian terdahulu bahwa menggambarkan berbagai cara dimana seorang konselor mungkin meneruskan menolong seorang klein dalam tahap III, tapi dalam hal ini agak sulit untuk menggambarkan dalam contoh dalam arti seperti pada tahap I dan tahap II, namun demikian yang sangat popular saat ini, banyak orang mengungkapkan sebagai contoh dalam tahap III, apa yang disebut dengan “ Konseling Karier yang berlebihan” atau “Konseling Karier yang salah”. Jadi contoh konseling karier sebagai hal yang menjelaskan kebutuhan akan keahlian dalam suatu situasi dan dalam beberapa ranah konseling.
Dengan demikian dalam paragraph ini menekankan tema sentral yakni factor yang lain dalam konseling yang lain ialah posisi pendengar non-ahli pada tahap I dan II dan merupakan penekanan yang paling aman dalam segala jenis keahlian.
Suatu tema paralel ialah bila masalah tiba menjadi masalah dari hari ke hari  yang mengganggu produktivitas dan energi orang, yang sebagian besar tidak memerlukan seorang ahli. Untuk sebagian besar masalah semacam itu tidak ada database yang khusus yang dibutuhkan seorang konselor.
Sejalan dengan pemkiran diatas, maka sebagian besar konseling dari hari ke hari oleh pimpinan, teman sejawat, administrasi, bahkan suami / istri dapat membawa seseorang kedalam tiga tahap konseling hanya dengan memahami masalah, membentuknya dimana ada kemungkinan menarik kesimpulan, kemudian memimbing orang itu membuat perubahan melalui pilihan yang perlu segera dilaksanakan.
Dan tentu saja ada keperluan yang tetap akan perlunya dukungan pemberian semangat bila seseorang mngadakan perubahan. Nilai dukungan tidak dapat dianggap remeh. Memag ada kalanya orang dapat dan memang saling membantu.